DOI QR코드

DOI QR Code

Development of Simultaneous Analytical Method for Five Lignans in Edible Seeds

종자류 식품에 함유된 5종 리그난의 동시 분석법 개발

  • Yoonjeong, Kim (Dept. of Food Science & Biotechnology, Kyungsung University) ;
  • Jiye, Pyeon (Dept. of Food Science & Biotechnology, Kyungsung University) ;
  • In-hwan, Baek (College of Pharmacy, Kyungsung University) ;
  • Younghwa, Kim (Dept. of Food Science & Biotechnology, Kyungsung University)
  • 김윤정 (경성대학교 식품생명공학과) ;
  • 편지예 (경성대학교 식품생명공학과) ;
  • 백인환 (경성대학교 약학과 ) ;
  • 김영화 (경성대학교 식품생명공학과)
  • Received : 2022.11.25
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

There has been increased interest in lignans due to their potential effect in reducing the risk of developing several diseases. To evaluate lignan contents, sensitive and accurate methods should be developed for their quantification in food. The present study aimed to validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of 5 lignans: lariciresinol (Lar), matairesinol (Mat), pinoresinol (Pin), secoisolariciresinol (Seco), and syringaresinol (Syr). The validation included selectivity, linearity, recovery, accuracy, and precision. The method was proved to be specific, with a linear response (R2≥0.99). The limits of detection were 0.040~0.765 ㎍/100 g and the limits of quantification were 0.114~1.532 ㎍/100 g. Recoveries were 90.588~109.053% for black sesame powder. Relative standard deviations of repeatability and reproducibility were below 5%. Total lignan contents of roasted coffee bean, oat, and blacksoy bean were 105.702 ㎍/100 g, 78.965 ㎍/100 g, and 165.521 ㎍/100 g, respectively. These results showed that LC-MS/MS analysis would be effective in producing acceptable sensitivity, accuracy, and precision in five lignan analyses.

Keywords

Acknowledgement

이 논문은 2022년도 농촌진흥청 연구사업(세부과제번호: PJ0170702022) 및 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원(201900980004)을 받아 수행되었고, 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업에 의하여 지원되었습니다.

References

  1. Adlercreutz H, Mazur W. 1997. Phyto-oestrogens and Western diseases. Ann Med 29:95-120 https://doi.org/10.3109/07853899709113696
  2. Angeloni S, Navarini L, Khamitova G, Sagratini G, Vittori S, Caprioli G. 2020. Quantification of lignans in 30 ground coffee samples and evaluation of theirs extraction yield in espresso coffee by HPLC-MS/MS triple quadrupole. Int J Food Sci Nutr 71:193-200 https://doi.org/10.1080/09637486.2019.1624693
  3. AOAC 2016. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. Association of Official Analytical Communities International
  4. Cederroth CR, Auger J, Zimmermann C, Eustache F, Nef S. 2010. Soy, phyto-oestrogens and male reproductive function: A review. Int J Androl 33:304-316 https://doi.org/10.1111/j.1365-2605.2009.01011.x
  5. Cornwell T, Cohick W, Raskin I. 2004. Dietary phytoestrogens and health. Phytochemistry 65:995-1016 https://doi.org/10.1016/j.phytochem.2004.03.005
  6. Deng X, Chen X, Cheng W, Shen Z, Bi K. 2008. Simultaneous LC-MS quantification of 15 lignans in Schisandra chinensis (Turcz.) Baill. fruit. Chromatographia 67:559-566 https://doi.org/10.1365/s10337-008-0589-3
  7. Durazzo A, Zaccaria M, Polito A, Maiani G, Carcea M. 2013. Lignan content in cereals, buckwheat and derived foods. Foods 2:53-63 https://doi.org/10.3390/foods2010053
  8. Gerstenmeyer E, Reimer S, Berghofer E, Schwartz H, Sontag G. 2013. Effect of thermal heating on some lignans in flax seeds, sesame seeds and rye. Food Chem 138:1847-1855 https://doi.org/10.1016/j.foodchem.2012.11.117
  9. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, Nishibe S, Adlercreutz H. 2001. In vitrometabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178-3186 https://doi.org/10.1021/jf010038a
  10. Jang WH, Lee WY, Lee BJ, Kim JM, Park SJ. 2019. Validation of simultaneous analysis method of standard compounds in fermented Kalopanax pictus Nakai by bioconversion. Korean J Food Nutr 32:148-154 https://doi.org/10.9799/KSFAN.2019.32.2.148
  11. Jung TD, Kim JM, Choi SI, Choi SH, Cho BY, Lee JH, Lee SJ, Park SJ, Heo IY, Lee OH. 2017. Method validation for determination of lignan content in fermented sesame by bioconversion. J Korean Soc Food Sci Nutr 46:646-652 https://doi.org/10.3746/JKFN.2017.46.5.646
  12. Kang MH, Naito M, Sakai K, Uchida K, Osawa T. 1999. Mode of action of sesame lignans in protecting low density lipoprotein against oxidative damage in vitro. Life Sci 66:161-171 https://doi.org/10.1016/S0024-3205(99)00574-3
  13. Levis S, Strickman-Stein N, Doerge DR, Krischer J. 2010. Design and baseline characteristics of the soy phytoestrogens as replacement estrogen (SPARE) study - A clinical trial of the effects of soy isoflavones in menopausal women. Contemp Clin Trials 31:293-302 https://doi.org/10.1016/j.cct.2010.03.007
  14. Mazur WM, Wahala K, Rasku S, Salakka A, Hase T, Adlercreutz H. 1998. Lignan and isoflavonoid concentrations in tea and coffee. Br J Nutr 79:37-45 https://doi.org/10.1079/BJN19980007
  15. Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH. 2005. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393-402 https://doi.org/10.1079/BJN20051371
  16. Milder IEJ, Arts ICW, Venema DP, Lasaroms JJP, Wahala K, Hollman PCH. 2004. Optimization of a liquid chromatography - tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. J Agric Food Chem 52:4643-4651 https://doi.org/10.1021/jf0497556
  17. Norskov NP, Knudsen KEB. 2016. Validated LC-MS/MS method for the quantification of free and bound lignans in cereal-based diets and feces. J Agric Food Chem 64:8343-8351 https://doi.org/10.1021/acs.jafc.6b03452
  18. Ok HE, Chang HJ, Ahn JH, Cho JY, Chun HS. 2009. Estimation of measurement uncertainty for the HPLC analysis of deoxynivalenol in wheat. Korean J Food Sci Technol 41:258-264
  19. Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Ma kela S̈, Pongratz I. 2007. Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148:4875-4886 https://doi.org/10.1210/en.2007-0289
  20. Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. 2010. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr Rev68:571-603
  21. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remon A, M'hiri N, Garcia-Lobato P, Manach C, Knox K, Eisner R, Wishart DS, Scalbert A. 2013. Phenol-Explorer 3.0: A major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013:bat070
  22. Saadati N, Abdullah MP, Zakaria Z, Sany SBT, Rezayi M, Hassonizadeh H. 2013. Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chem Cent J 7:63
  23. Schwartz H, Sontag G. 2011. Analysis of lignans in food samples-impact of sample preparation. Curr Bioact Compd7:156-171
  24. Setchell KD. 1998. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S-1346S https://doi.org/10.1093/ajcn/68.6.1333S
  25. Smeds AI, Eklund PC, Sjoholm RE, Willfor SM, Nishibe S, Deyama T, Holmbom BR. 2007. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337-1346 https://doi.org/10.1021/jf0629134
  26. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N. 2006. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer54:184-201
  27. Wu WH. 2007. The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chem104:341-344