Acknowledgement
이 연구는 산업통상자원부의 스마트특성화 기반구축사업 중 실물-가상연계 조선해양 기본설계 기술지원 사업 (P0021213) 과제 및 산업통상자원부와 한국산업기술진흥원의 지역혁신클러스터R&D 사업 (P0015330)의 지원을 받아 수행되었습니다.
References
- Ba, J.L., Kiros, J.R. and Hinton, G.E., 2016. Layer Normalization. arXiv preprint arXiv:1607.06450.
- He, K., Zhang, X., Ren, S. and Sun, Ji., 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.770-778.
- Hendrycks, D. and Gimpel, K., 2016. Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415.
- Kim, B., Azevedo, V.C., Thuerey, N., Kim, T, Gross, M. and Solenthaler, B., 2019. Deep fluids: A generative network for parameterized fluid simulations. Computer Graphics Forum, 38(2), pp.59-70. https://doi.org/10.1111/cgf.13619
- Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations, San Diego, May 7-9.
- Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. and Battaglia, P.W., 2021. Learning mesh-based simulation with graph networks. 9th International Conference on Learning Representations, Austria, May 3-7.
- Thuerey, N., Weissenow, K., Prantl, L. and Hu, X., 2019. Deep learning methods for Reynolds-averaged navier-stokes simulations of airfoil flows. American Institute of Aeronautics and Astronautics Journal, 58(1), pp.25-36.