Acknowledgement
이 논문은 충북대학교 국립대학육성사업(2020)지원을 받아 작성되었음.
References
- Jongseo Lee, Mangyu Kim, and Hakil Kim, "Camera and LiDAR Sensor Fusion for Improving Object Detection", JBE Vol. 24, No. 4, July 2019. https://doi.org/10.5909/JBE.2019.24.4.580
- Jinbae Park, Teerath Kumar, and Sung-Ho Bae, "Search for Optimal Data Augmentation Policy for Environmental Sound Classification with Deep Neural Networks", JBE Vol. 25, No. 6, November 2020. https://doi.org/10.5909/JBE.2020.25.6.854
- Y. Onishi, T. Yoshida, H. Kurita, T. Fukao, H. Arihara, and A. Iwai, "An automated fruit harvesting robot by using deep learning." Robomech Journal, Vol. 6, No.13, November 2019.
- K. I-His, H. Ya-Wen, Y. Ya-Zhu, C. Ya-Li, L. Yi-Horng, and P. Jau-Woei, "Determination of Lycopersicon maturity using convolustional autoencoders", Scientia Horticulturae, Vol. 256, No.108538, October 2019.
- A. Elhassouny, and F. Smarandache, "Smart mobile application to recognize tomato leaf diseases using convolutional Neural Networks," International Conference of Computer Science and Renewable Energies, pp. 1-4, 2019.
- K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN." In ICCV, pp.2961-2969, 2017.
- Y. Yu, K. Zhang, L. Yang, and D. Zhang, "Fruit detection for stawberry harvesting robot in non-structural environment based on mask-RCNN." Comput Electron Agricult, Vol. 163, No.104846, June 2019.
- S. Gonzalez, C. Arellano, and J. E.Tapia, "Deepblueberry: Quantification of blueberries in the wild using instance segmentation." IEEE Access, Vol. 7, pp. 105776-105788, August 2019. https://doi.org/10.1109/access.2019.2933062
- W. Yin, H. Wen, Z. Ning, J. Ye, Z. Dong, and L. Luo, "Fruit Detection and Pose Estimation for Grape Cluster-Harvesting Robot Using Binocular Imagery Based on Deep Neural Networks." Frontiers in Robotics and AI, Vol. 8, No.626989, June 2021.
- N. Wagner, R. Kirk, M. Hanheide, and G. Cielniak, "Efficient and Robust Orientation Estimation of Strawberries for Fruit Picking Applications", IEEE International Conference on Robotics and Automation, pp. 13857-13863, May, 2021.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting" The journal of machine learning research, Vol. 15, No.1, pp. 1929-1958, June 2014.
- T. DeVries, and G. W. Taylor, "Improved regularization of convolutional neural networks with cutout" arXiv, Vol. 1708, No.04552, 2017.
- Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, "Random Erasing Data Augmentation" Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No.07, pp. 13001-13008. 2020.
- S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, "Cutmix: Regularization strategy to train strong classifiers with localizable features" In Proceedings of the IEEE/CVF International Conference on Computer Vision pp. 6023-6032, 2019.
- Y. Ge, Y. Xiong, G. L. Tenorio, and P. J. From, "Fruit localization and environment perception for strawberry harvesting robots" IEEE Access, Vol. 7, pp. 147642-147652, October 2019. https://doi.org/10.1109/access.2019.2946369
- N. Guo, B. Zhang, J. Zhou, K. Zhan, and S. Lai, "Pose estimation and adaptable grasp configuration with point cloud registration and geometry understanding for fruit grasp planning" Computers and Electronics in Agriculture, Vol. 179, pp. 105818, December 2020. https://doi.org/10.1016/j.compag.2020.105818
- G. Lin, Y. Tang, X. Zou, J. Xiong, and J. Li, "Guava detection and pose estimation using a low-cost RGB-D sensor in the field" Sensors, Vol. 19, No.2, pp. 428. January 2019. https://doi.org/10.3390/s19020428
- H. Li, Q. Zhu, M. Huang, Y. Guo, and J. Qin, "Pose estimation of sweet pepper through symmetry axis detection" Sensors, Vol. 18 No.9, pp. 3083, September 2018. https://doi.org/10.3390/s18093083
- J. Kim, J. Kim, H. Son, "Development of Deep Learning-based Tomato Detection and Manipulator Control System for Tomato Harvesting Robot", Institute of Control, Robotics and Systems, pp. 525-526, 2020.
- W. Lee, K. Ko, J. Kang, H. Park, I. Jang, "Instance Segmentation based Recognition System Tracking Tomatoes by Ripeness in Natural Light Conditions", Journal of Institute of Control, Robotics and Systems, vol. 26, no. 11, pp. 940-948, 2020. https://doi.org/10.5302/j.icros.2020.20.0129
- A. Kelly, cocosynth, 2019, https://github.com/akTwelve/cocosynth.git.
- AI Hub, Agricultural knowledge base, 2018, https://aihub.or.kr/aidata/129.
- Kaggle, Tomato Detection, 2020, https://www.kaggle.com/andrewmvd/tomato-detection
- A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, "Albumentations: fast and flexible image augmentations" Information, Vol. 11, No.2, pp. 125, February 2020. https://doi.org/10.3390/info11020125
- T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, "Microsoft COCO: Common objects in context" In European conference on computer vision, pp. 740-755, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.
- Laboro, Laboro Tomato, 2020, https://github.com/laboroai/LaboroTomato.git
- Q. Zhou, Y. Park, and V. Koltun, "Open3D: A modern library for 3D data processing" arXiv, Vol. 1801, No.09847 2018.
- X. Pan, cylinder_fitting, 2017, https://github.com/xingjiepan/cylinder_fitting.git