• Title/Summary/Keyword: Tomato detection

Search Result 87, Processing Time 0.023 seconds

Development and Evaluation of PCR-Based Detection for Pseudomonas syrinage pv. tomato in Tomato Seeds (토마토 종자로부터 PCR을 이용한 Pseudomonas syringae pv. tomato의 검출)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Yea, Mi-Chi;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.376-380
    • /
    • 2011
  • The bacterial speck of tomato caused by Pseudomonas syringae pv. tomato leads to serious economic losses especially on fruits of susceptible genotype. Thus, Pseudomonas syringae pv. tomato is a plant quarantine bacterium in many countries including Korea. In this study, we developed specific PCR assays for detection of the bacterium from tomato seeds. A specific primer set is designed from the hrpZ gene for specific detection of Pseudomonas syringae pv. tomato. A 501 bp PCR product corresponding to hrpZ gene was amplified only form Pseudomonas syringae pv. tomato strains, but no PCR product was amplified from other tomato bacterial pathogens, such as Pseudomonas syringae pv. glycinea, P. syringae pv. maculicola, P. syringae pv. atropurpurea, P. syringae pv. morsprunorum, and from other P. syringae pathovar strains. The nested-PCR primer set corresponding to an internal fragment of the 501 bp sequence (hrpZ) gine was used to specific detection of Pseudomonas syringae pv. tomato in tomato seed. A 119 bp PCR product using nested PCR primer was highly specific and sensitive to detect low level of Pseudomonas syrigae pv. tomato in tomato seeds. We believe that the PCR assays developed in this study is very useful to detect Pseudomonas syringae pv. tomato from the tomato seeds.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

Specific Primer Sets for RT-PCR Detection of Major RNA Viruses of Tomato Plants in Korea (국내의 토마토 주요 바이러스 진단을 위한 역전사중합반응법용 프라이머 세트)

  • Shin, Jun-Sung;Han, Jung-Heon;Shin, Yu-Ju;Kwak, Hae-Ryun;Choi, Hong-Soo;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.193-201
    • /
    • 2017
  • Major tomato viruses in Korea are Tomato chlorosis virus (ToCV), Tomato spotted wilt virus (TSWV), Cucumber mosaic virus (CMV), Pepper mottle virus (PepMoV), and Tomato mosaic virus (ToMV). RT-PCR conditions for the viruses were examined, especially in primer set and RT-PCR mixture. Total 46 primer sets from the unique sequence of the viruses were tested for nonspecific background products in a RT-PCR mixture without template. Among them 16 primer sets were applied to healthy tomato RNA, resulting the compatibility between RT-PCR mixture and primer set influenced RT-PCR to reduce nonspecific background products. Based on the combinations among cDNA synthesis parameters and RT-PCR mixtures, two reaction mixtures were finally selected for ToCV detection. The condition allowed to determine more specific primer sets; C029 (ToCV), C072 (TSWV), C070 (CMV), C048 (PepMoV), and C065 (ToMV). These primer sets are expected to be of use to specific detection of the major viruses in tomato plants.

A Simple and Reliable Molecular Detection Method for Tomato yellow leaf curl virus in Solanum lycopersicum without DNA Extraction

  • Yoon, Ju-Yeon;Kim, Su;Choi, Gug-Seoun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2015
  • In the present work, a pair of primers specific to Tomato yellow leaf curl virus (TYLCV) was designed to allow specific amplification of DNA fragments from any TYLCV isolates using an extensive alignment of the complete genome sequences of TYLCV isolates deposited in the GenBank database. A pair of primers which allows the specific amplification of tomato ${\beta}$-tubulin gene was also analyzed as an internal PCR control. A duplex PCR method with the developed primer sets showed that TYLCV could be directly detected from the leaf crude sap of infected tomato plants. In addition, our developed duplex PCR method could determine PCR errors for TYLCV diagnosis, suggesting that this duplex PCR method with the primer sets is a good tool for specific and sensitive TYLCV diagnosis. The developed duplex PCR method was further verified from tomato samples collected from some farms in Korea, suggesting that this developed PCR method is a simple and reliable tool for rapid and large-scale TYLCV detections in tomato plants.

PCR Detection Method for Rapid Diagnosis of Bacterial Canker Caused by Clavibacter michiganensis on Tomato (토마토 궤양병 신속 진단을 위한 Clavibacter michiganensis의 PCR 검출법)

  • Park, Mi-Jeong;Back, Chang-Gi;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.342-347
    • /
    • 2018
  • Bacterial canker caused by Clavibacter michiganensis is considered to be one of the most serious diseases, leading to economic damage to tomato worldwide. Diagnosis of the bacterial canker on tomato is known to be difficult because the causal pathogen is slow-growing on artificial media as well as causes latent infection in tomato. In this study, as a less time-consuming method, a specific primer set was newly designed for rapid detection of C. michiganensis. The method presented here is so simple, easy, and fast that it can be useful and practical in direct detection of the bacterial canker pathogen from tomato plants.

A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm (딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축)

  • Na, Myung Hwan;Cho, Wanhyun;Kim, SangKyoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.581-596
    • /
    • 2020
  • Purpose: purpose of this study was to propose the web application platform which can be to detect and discriminate various diseases and pest of tomato plant based on the large amount of disease image data observed in the facility or the open field. Methods: The deep learning algorithms uesed at the web applivation platform are consisted as the combining form of Faster R-CNN with the pre-trained convolution neural network (CNN) models such as SSD_mobilenet v1, Inception v2, Resnet50 and Resnet101 models. To evaluate the superiority of the newly proposed web application platform, we collected 850 images of four diseases such as Bacterial cankers, Late blight, Leaf miners, and Powdery mildew that occur the most frequent in tomato plants. Of these, 750 were used to learn the algorithm, and the remaining 100 images were used to evaluate the algorithm. Results: From the experiments, the deep learning algorithm combining Faster R-CNN with SSD_mobilnet v1, Inception v2, Resnet50, and Restnet101 showed detection accuracy of 31.0%, 87.7%, 84.4%, and 90.8% respectively. Finally, we constructed a web application platform that can detect and discriminate various tomato deseases using best deep learning algorithm. If farmers uploaded image captured by their digital cameras such as smart phone camera or DSLR (Digital Single Lens Reflex) camera, then they can receive an information for detection, identification and disease control about captured tomato disease through the proposed web application platform. Conclusion: Incheon Port needs to act actively paying.

One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacteria and Viruses in Pepper and Tomato Seeds (고추와 토마토 종자에서 종자전염 세균 및 바이러스의 동시 검출을 위한 One-step Multiplex RT-PCR 방법)

  • Jeong, Kyu-Sik;Soh, Eun-Hee
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.44-51
    • /
    • 2011
  • The aim of this study was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant seed infection pathogenic bacteria and virus, Xanthomonns campestris pv. vesicatoria (Xcv), Clavibacter michiganensis subsp. michiganensis (Cmm), Erwinia carotovora subsp. carotovora (Ecc), Pepper mild mottle virus (PMMoV) and Tobacco mild green mosaic virus (TMGMV) in pepper and tomato seeds. Most of pepper and tomato bacterial and virus diseases are responsible for germination and growth obstruction. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcv, Cmm, Ecc, PMMoV and TMGMV in pepper and tomato seeds, five pairs (Cmm-F/R, Ecc-F/R, Xcv-F/R, PMMoV-F/R, TMGMV-F/R) of specific primer were synthesized by primer-blast program. The multiplex PCR for the five pathogens in pepper and tomato seeds could detect specially without interference among primers and/or cDNA of plant seeds and other plant pathogens. The PCR result for pathogen detection using 20 commercial pepper and 10 tomato seed samples, Ecc was detected from 4 pepper and 2 tomato seed samples, PMMoV was detected from 1 pepper seed sample, and PMMoV and TMGMV were simultaneously detected from 1 pepper seed sample.

Detection of TMV, ToMV, and CMV from Tomato Seeds and Plants (토마토 종자와 식물체로부터의 TMV, ToMV 및 CMV 검출)

  • Park, Kyung-Hoon;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2002
  • For the detection of Tobacco masaic virus (TMV), Tomato mosaic virus (ToMV), and Cucumber mosaic virus (CMV), tomato seeds of 11 table tomato and 7 cherry tomato cultivars were assayed by DAS-ELISA. Among the cultivars, TMV and ToMV were detected from 9 cultivars at the rates lower than 20% and 16%, respectively. In the assay on seed transmission rates, ToMV and CMV were detected as high as 24% and 8% , respectively, but TMV was not detected. In field survey on these viruses from tomato plants of 10 different places in Chungbuk province, ToMV and CMV were detected from most fields. TMV was detected from only 3 fields. The highest detection rates of these viruses were recorded in Cheongwon for TMV Chungju for ToMV, and the other locality of Chungju far CMV. It was difficult to find any relationship between the growth stage of tomato and infection rates. TMV usually caused mosaic on leaves while ToMV caused various symptoms including yellows, necrosis, and mottling. CMV-infected tomato plants showed symptoms of shoestring, fern leaf, and yellows.

Convenient Virion Capture (VC)/PCR for Tomato yellow leaf curl geminivirus Occurring on Tomato in Korea (우리나라 토마토에 발생한 토마토황화잎말림바이러스(Tomato yellow leaf curl geminivirus)의 초간편 Virion Capture(VC)/PCR 진단법)

  • Cho, Jeom-Deog;Kim, Tae-Seong;Kim, Ju-Hee;Choi, Gug-Seoun;Chung, Bong-Nam;Choi, Hong-Soo;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • Tomato yellow leaf curl virus (TYLCV), a newly reported Geminivirus from tomato, generated recently large economic losses in Korea. Development of a fast and precise genetic diagnosis technique for detecting TYLCV which Agricultural research and extension services can utilize easy and handy is very important to prevent yield losses. Virion Capture (VC)/PCR is a simple, accurate and economical genetic detection method without any works or commercial kits for the extraction of the nucleic acid from the infected plants. Primers of twenty two for detection of TYLCV were designed and tested with extracted total DNA or crude sap from tomato leaf infected with TYLCV and healthy plant. Nine primers for total DNA using conventional PCR and another 9 primers for VC/PCR were selected eventually. Primers of six having same specificity were selected from the two methods and tested with other Geminivirus, Tobacco leaf curl virus (TLCV) by VC/PCR. Finally specific primers of four were selected for detection of TYLCV using VC/PCR, and Deng (540, 541), a degenerate primer for Geminivirus reported in 1996, was also developed for VC/PCR.