DOI QR코드

DOI QR Code

텍스트마이닝을 활용한 건설실무정보의 특성 분석 - 건설기술, 사례, 원가절감 등 정보를 중심으로 -

Analysis on the Characteristics of Construction Practice Information Using Text Mining: Focusing on Information Such as Construction Technology, Cases, and Cost Reduction

  • 투고 : 2022.10.18
  • 심사 : 2022.11.24
  • 발행 : 2022.11.30

초록

본 연구는 전문지식을 갖지 않은 건설기술자와 건설사업 참여자가 건설 실무에서 중요도가 높은 단어와 단어 간의 상호 연관관계를 쉽게 이해할 수 있도록 정보서비스를 개선하고자 하였다. 이를 위해 텍스트마이닝과 네트워크 중심성을 이용하여 건설기술정보시스템에서 가장 많이 사용하고 있는 기술정보, 사례정보 및 원가절감 등 건설실무정보에 대해 단어의 출현 빈도, 주제 모형화, 네트워크 중심성을 분석하였다. 이러한 분석을 통해 도로, 포장, 교량, 터널 등 도로공사와 관련한 설계, 시공, 사업관리, 시방·기준, 유지관리 등이 건설 실무에서 중요한 정보로 파악되었다. 또한, 연결 중심성과 고유벡터 중심성 측정을 통해 중요도가 높은 단어 간의 상관도를 분석하였다. 상관도 분석을 통해 기술정보를 확충한다면 보다 유용한 정보를 제공할 수 있다는 결과를 얻었다. 끝으로, 연구 결과가 갖는 제약과 이에 따른 추가적인 연구를 제시하였다.

This study aims to improve the information service so that construction engineers and construction project participants without specialized knowledge can easily understand the important words and the interrelationships between them in construction practice. To this end, using text mining and network centrality, the frequency of occurrence of words, topic modeling, and network centrality in construction practice information such as technical information, case information, and cost reduction, which are most used in the Construction Technology Digital Library, were analyzed. Through this analysis, design, construction, project management, specifications, standards, and maintenance related to road construction such as roads, pavements, bridges, and tunnels were identified as important in construction practice. In addition, correlations were analyzed for words with high importance by measuring Degree Centrality and Eigenvector Centrality. The result was that more useful information could be provided if the technical information was expanded. Finally, we presented the limitations of the study results and additional studies according to the limitations.

키워드

과제정보

본 논문은 교육과학기술부의 재원으로 한국건설기술연구원 "(22주요-대1-목적)미래 건설산업 견인 및 신시장 창출을 위한 스마트 건설기술 연구 (2/2)" 과제와 국토교통부 출연사업인 "22 건설기술정보 DB 및 서비스시스템 운영" 과제의 지원을 받아 수행되었음.

참고문헌

  1. Choe, Jong-Mook (2016). Investigating journal citation network with centrality measures in the public administration and policy field. Journal of Digital Convergence, 14(9), 301-308. http://dx.doi.org/10.14400/JDC.2016.14.9.301
  2. Construction Technology Digital Library (2022. 09. 20). Available: http://www.codil.or.kr
  3. Jeong, Geun-Ha (2010). A Study of Foresight Method Based on Textmining and Complexity Network Analysis. Korea Institute of Science and Technology Evaluation and Planning.
  4. KDI Public Investment Management Center (2021). 2020 KDI Public Investment Management Center Annual Report. Korea Development Institute.
  5. Kil, Ho-Hyun (2019). The study of Korean stopwords list for text mining. Urimalgeul The Korean Language and Literature, 78, 1-25. https://doi.org/10.18628/URIMAL.78..201809.1
  6. Kim, Dong-Hoi, Lee, Won-Hyung, & Cho, Sung-Il (2018). Proposal of keyword extraction method based on morphological analysis and PageRank in Tweeter. Journal of Digital Contents Society, 19(1), 157-163. https://doi.org/10.9728/dcs.2018.19.1.157
  7. Kim, Jae-Jun & Jeong, Cheol-Woo (2012). Analysis of trend in construction using textmining method. Journal of The Korean Digital Architecture.Interior Association, 12(2), 53-60.
  8. Lee, Kang-Won & Lee, Jeong-Won (2017). Analysis of Seoul metropolitan subway network characteristics using network centrality measures. Journal of The Korean Society for Railway, 20(3), 413-422. https://doi.org/10.7782/JKSR.2017.20.3.413
  9. Leem, Byung-Hak & Chun, Heui-Ju (2011). A study on the impact of social network at ports on throughput with a focus on port cooperation index. POSRI Business Economics Research, 11(3), 289-305.
  10. National Information Society Agency (2015). Easy to know Linked Open Data.
  11. Oh, Jun-Seok (2015). Identifying research opportunities in the convergence of transportation and ICT using text mining techniques. Transportation Research, 22(4), 93-110. http://dx.doi.org/10.34143/jtr.2015.22.4.93
  12. Park, Jun-Yong (2021). Research topic analysis in civil engineering field using text mining. Seoul Technology Research, 11, 50-52.
  13. Seo, Dae-Ho (2019). Catch it! Text Mining with Python. Seoul: Bjpublic.
  14. Sung, Hyun-Gun, Park, In-Kwon, Ji, Kyu-Hyun, Kim, Jin-Yoo, Jang, Kyoung-Seok, Kim, Jun-Hyung, Ko, Jinsoo, & Jin, Chenghua (2019). The analysis on research trend of territorial and urban planning for Mack Joong Choi through text mining: focused on his academic papers. The Korea Spatial Planning Review, 103, 3-26. http://dx.doi.org/10.15793/kspr.2019.103..01