Acknowledgement
This work was supported by the research project "Development of 20 kW electric drive platform and integrated vehicle control module technology for commercialization" funded by the Ministry of Agriculture, Food and Rural Affairs of the Korean Government.
References
- Cortes, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodriguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008) https://doi.org/10.1109/TIE.2008.2007480
- Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., Zanchetta, P., Abu-Rub, H., Young, H.A., Rojas, C.A.: State of the art of finite control set model predictive control in power electronics. IEEE Trans Ind Inf 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
- Mikail, R., Husain, I., Sozer, Y., Islam, M.S., Sebastian, T.: A fixed switching frequency predictive current control method for switched reluctance machines. IEEE Trans Ind Appl 50(6), 3717-3726 (2014) https://doi.org/10.1109/TIA.2014.2322144
- Yang, X., Liu, X., Zhang, Z., Garcia C., Rodriguez, J.: Two effective spectrum-shaped FCS-MPC approaches for three-level neutral-point-clamped power converters. 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 1011-1016 (2020)
- Zhao, S., Blaabjerg, F., Wang, H., Member, S.: An overview of artificial intelligence applications for power electronics. IEEE Trans Power Electon 36(4), 4633-4658 (2021) https://doi.org/10.1109/TPEL.2020.3024914
- Bose, B.K.: Artificial intelligence techniques: how can it solve problems in power electronics? An advancing frontier. IEEE Power Electron Mag 7(4), 19-27 (2020) https://doi.org/10.1109/MPEL.2020.3033607
- Hornik, K., Stinchcombe, M.B., White, H.L.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359-366 (1989) https://doi.org/10.1016/0893-6080(89)90020-8
- Guillod, T., Papamanolis, P., Kolar, J.W.: Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open J Power Electron 1, 284-299 (2020) https://doi.org/10.1109/ojpel.2020.3012777
- Chiozzi, D., Bernardoni, M., Delmonte, N., Cova, P.: A neural network based approach to simulate electrothermal device interaction in SPICE environment. IEEE Trans Power Electron 34(5), 4703-4710 (2019) https://doi.org/10.1109/tpel.2018.2863186
- Dragicevic, T., Wheeler, P., Blaabjerg, F.: Artificial intelligence aided automated design for reliability of power electronic systems. IEEE Trans Power Electron 34(8), 7161-7171 (2019) https://doi.org/10.1109/tpel.2018.2883947
- Soliman, H., Davari, P., Wang, H., Blaabjerg, F.: Capacitance estimation algorithm based on DC-link voltage harmonics using artificial neural network in three-phase motor drive systems. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 5795-5802 (2017)
- Lucia, S., Navarro, D., Karg, B., Sarnago, H., Lucia, O.: Deep learning-based model predictive control for resonant power converters. IEEE Trans Ind Inf 17(1), 409-420 (2021) https://doi.org/10.1109/tii.2020.2969729
- Mohamed, I.S., Rovetta, S., Do, T.D., Dragicevic, T., Diab, A.A.Z.: A neural-network-based model predictive control of three-phase inverter with an output LC flter. IEEE Access 7, 124737-124749 (2019) https://doi.org/10.1109/access.2019.2938220
- Sarali, D. S., Agnes Idhaya Selvi, V., Pandiyan, K.: An improved design for neural-network-based model predictive control of three-phase inverters. 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 1-5 (2019)
- Wang, D., et al.: Model predictive control using artificial neural network for power converters. IEEE Trans Ind Electron 69(4), 3689-3699 (2022) https://doi.org/10.1109/TIE.2021.3076721
- Wang, S., Dragicevic, T., Gao, Y., Teodorescu, R.: Neural network based model predictive controllers for modular multilevel converters. IEEE Trans Energy Convers 36(2), 1562-1571 (2021) https://doi.org/10.1109/TEC.2020.3021022
- Novak, M., Dragicevic, T.: Supervised imitation learning of finite-set model predictive control systems for power electronics. IEEE Transac Ind Electron 68(2), 1717-1723 (2021) https://doi.org/10.1109/tie.2020.2969116
- Grimm, F., Kolahian, P., Zhang, Z., Baghdadi, M.: A sphere decoding algorithm for multistep sequential model-predictive control. IEEE Trans Ind Appl 57(3), 2931-2940 (2021) https://doi.org/10.1109/TIA.2021.3060694
- He, J., Xing, L., Wen, C.: Weighting factors' real-time updating for finite control set model predictive control of power converters via reinforcement learning. 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 707-712 (2021)
- Zanchetta, P.: Heuristic multiobjective optimization for cost function weights selection in finite states model predictive control. 2011 Workshop on Predictive Control of Electrical Drives and Power Electronics, 70-75 (2011)