Acknowledgement
This research was supported by National Natural Science Foundation of China (Grant 52177002) and Natural Science Foundation of Shandong Province (Grant ZR2019MEE052).
References
- Carreras, M., Hernandez, J.D., Vidal, E., Palomeras, N., Ribas, D., Ridao, P.: Sparus II AUV-A hovering vehicle for seabed inspection. IEEE J. Oceanic Eng. 43(2), 344-355 (2018) https://doi.org/10.1109/joe.2018.2792278
- Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W., Chiodi, A.M.: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26(4), 424-436 (2001) https://doi.org/10.1109/48.972073
- Grasmueck, M., Eberli, G.P., Viggiano, D.A., Correa, T., Rathwell, G., Luo, J.: Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett. 33(23), 1-6 (2006)
- Palomeras, N., Carreras, M., Ridao, P., Hernandez, E: Mission control system for dam inspection with an AUV. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 2551-2556 (2006)
- Kan, T., Mai, R., Mercier, P.P., Mi, C.C.: Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Power Electron. 33(8), 6622-6632 (2018) https://doi.org/10.1109/TPEL.2017.2757015
- Bradley, A.M., Feezor, M.D., Singh, H., Yates Sorrell, F.: Power systems for autonomous underwater vehicles. IEEE J. Oceanic Eng. 26(4), 526-538 (2001) https://doi.org/10.1109/48.972089
- Orekan, T., Zhang, P., Shih, C.: Analysis, design, and maximum power-efficiency tracking for undersea wireless power transfer. IEEE J. Emerg. Select. Topics Power Electron. 6(2), 843-854 (2018) https://doi.org/10.1109/jestpe.2017.2735964
- Zhang, W., Mi, C.C.: Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 65(6), 4768-4778 (2016) https://doi.org/10.1109/TVT.2015.2454292
- Qu, X., Yao, Y., Wang, D., Wong, S., Tse, C.K.: A family of hybrid IPT topologies with near load-independent output and high tolerance to pad misalignment. IEEE Trans. Power Electron. 35(7), 6867-6877 (2020) https://doi.org/10.1109/tpel.2019.2955299
- Darvish, P., Mekhilef, S., Illias, H.A.B.: A novel S-S-LCLCC compensation for three-coil WPT to improve misalignment and energy efficiency stiffness of wireless charging system. IEEE Trans. Power Electron. 36(2), 1341-1355 (2021) https://doi.org/10.1109/tpel.2020.3007832
- Chen, Y., Yang, B., Kou, Z., He, Z., Cao, G., Mai, R.: Hybrid and reconfigurable IPT systems with high-misalignment-tolerance for constant-current and constant-voltage battery charging. IEEE Trans. Power Electron. 33(10), 8259-8269 (2018) https://doi.org/10.1109/tpel.2018.2809785
- Li, Y., Xu, Q., Lin, T., Hu, J., He, Z., Mai, R.: Analysis and design of load-independent output current or output voltage of a three-coil wireless power transfer system. IEEE Trans. Transp. Electrifc. 4(2), 364-375 (2018) https://doi.org/10.1109/TTE.2018.2808698
- Li, Y., Hu, J., Li, X., Mai, R., Li, Z., Liu, M., He, Z.: Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems. IEEE Trans. Power Electron. 35(1), 1074-1085 (2020) https://doi.org/10.1109/tpel.2019.2914299
- Li, Y., Mai, R., Lu, L., Lin, T., Liu, Y., He, Z.: Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross Table couplings. IEEE Trans. Power Electron. 33(2), 1829-1842 (2018) https://doi.org/10.1109/TPEL.2017.2690061
- Hossain, A., Darvish, P., Mekhilef, S., Tey, K.S., Tong, C.W.: A new coil structure of dual transmitters and dual receivers with integrated decoupling coils for increasing power transfer and misalignment tolerance of wireless EV charging system. IEEE Trans. Ind. Electron. 69(8), 7869-7878 (2022) https://doi.org/10.1109/TIE.2021.3108697
- Kan, T., Zhang, Y., Yan, Z., Mercier, P., Mi, C.C.: A rotation-resilient wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Veh. Technol. 67(8), 6935-6942 (2018) https://doi.org/10.1109/tvt.2018.2836988
- Kan, T., Mai., R., Mercier., P.P., Mi, C.: A three-phase wireless charging system for lightweight autonomous underwater vehicles. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp 1407-1411 (2017)
- Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z., Hu, Y.: A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Trans. Power Electron. 34(5), 4005-4008 (2019) https://doi.org/10.1109/tpel.2018.2871316
- Cai, C., Wu, S., Zhang, Z., Jiang, L., Yang, S.: Development of a fit-to-surface and lightweight magnetic coupler for autonomous underwater vehicle wireless charging systems. IEEE Trans. Power Electron. 36(9), 9927-9940 (2021) https://doi.org/10.1109/TPEL.2021.3064411
- Wu, S., Cai, C., Chai, W., Li, J., Cui, Q., Yang, S.: Uniform power IPT system with quadruple-coil transmitter and crossed dipole receiver for autonomous underwater vehicles. IEEE Trans. Ind. Appl. 58(1), 1289-1297 (2022) https://doi.org/10.1109/TIA.2021.3094177