Acknowledgement
본 논문은 한국연구재단의 생애 첫 연구사업(과제번호: 2021R1G1A1094963)의 지원을 받아 수행된 연구 결과입니다.
References
- H.C. Zhou, J.R. Long and O.M. Yaghi, "Introduction to metal-organic frameworks", Chem. Rev. 112 (2012) 673. https://doi.org/10.1021/cr300014x
- S.L. James, "Metal-organic frameworks", Chem. Soc. Rev. 32 (2003) 276. https://doi.org/10.1039/b200393g
- S.T. Meek, J.A. Greathouse and M.D. Allendorf, "Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials", Adv. Mater. 23 (2011) 249. https://doi.org/10.1002/adma.201002854
- M. Gharib, V. Safarifard and A. Morsali, "Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitro aromatic sensing", Ultrason. Sonochem. 42 (2018) 112. https://doi.org/10.1016/j.ultsonch.2017.11.009
- Z. Zhang, Q. Yang, X. Cui, L. Yang, Z. Bao, Q. Ren and H. Xing, "Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving", Angew. Chem. Int. Ed. 56 (2017) 16282. https://doi.org/10.1002/anie.201708769
- L. Liu, Z. Yao, Y. Ye, Q. Lin, S. Chen, Z. Zhang and S. Xiang, "Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration", Cryst. Growth. Des. 18 (2018) 3724. https://doi.org/10.1021/acs.cgd.8b00545
- V. Gupta and S.K. Mandal, "A robust and water-stable two-fold interpenetrated metal-organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture", Dalton. Trans. 48 (2019) 415. https://doi.org/10.1039/c8dt03844a
- Z.Q. Shi, Z.J. Guo and H.G. Zheng, "Two luminescent Zn(ii) metal-organic frameworks for exceptionally selective detection of picric acid explosives", Chem. Commun. 51 (2015) 8300. https://doi.org/10.1039/c5cc00987a
- H.L. Jiang, T.A. Makal and H.C. Zhou, "Interpenetration control in metal-organic frameworks for functional applications", Coord. Chem. Rev. 257 (2013) 2232. https://doi.org/10.1016/j.ccr.2013.03.017
- R. Haldar, N. Sikdar and T.K. Maji, "Interpenetration in coordination polymers: structural diversities toward porous functional materials", Mater. Today 18 (2015) 97. https://doi.org/10.1016/j.mattod.2014.10.038
- Y.N. Gong, D.C. Zhong and T.B. Lu, "Interpenetrating metal-organic frameworks", Cryst. Eng. Comm. 18 (2016) 2596. https://doi.org/10.1039/C6CE00371K
- L. Ohrstrom, "Let's talk about MOFs - Topology and terminology of metal-orrganic frameworks and why we need them", Crystals 5 (2015) 154. https://doi.org/10.3390/cryst5010154
- M. Frank, M.D. Johnstone and G.H. Clever, "Interpenetrated cage structures", Chem. Eur. J. 22 (2016) 14104. https://doi.org/10.1002/chem.201601752
- R. Zhu, J. Ding, L. Jin and H. Pang, "Interpenetrated structures appeared in supramolecular cages, MOFs, COFs", Coord. Chem. Rev. 389 (2019) 119. https://doi.org/10.1016/j.ccr.2019.03.002
- O.M. Yaghi, "A tale of two entanglements", Nat. Mater. 6 (2007) 92. https://doi.org/10.1038/nmat1824
- D. Zhao, D.J. Timmons, D. Yuan and H.C. Zhou, "Tuning the topology and functionality of metal-organic frameworks by ligand design", Acc. Chem. Res. 44 (2011) 123. https://doi.org/10.1021/ar100112y
- A.B. Cairns and A.L. Goodwin, "Structural disorder in molecular framework materials", Chem. Soc. Rev. 42 (2013) 4881. https://doi.org/10.1039/c3cs35524a
- N.C. Burtch and K.S. Walton, "Modulating adsorption and stability properties in pillared metal-organic frameworks: a model system for understanding ligand effects", Acc. Chem. Res. 48 (2015) 2850. https://doi.org/10.1021/acs.accounts.5b00311
- L. Carlucci, G. Ciani, D.M. Proserpio, T.G. Mitina and V.A. Blatov, "Entangled two-dimensional coordination networks: a general survey", Chem. Rev. 114 (2014) 7757.
- O. Kwon, S. Park, H.C. Zhou and J. Kim, "Computational prediction of hetero-interpenetration in metal-organic frameworks", Chem. Commun. 53 (2017) 1953. https://doi.org/10.1039/C6CC08940B
- X. He, X.-P. Lu, Y.-Y. Tian, M.-X. Li, S. Zhu, F. Xing and R.E. Morris, "Controlling interpenetration in metal-organic frameworks by tuning the conformations of flexible bis(triazole) ligands", CrystEngComm. 15 (2013) 9437. https://doi.org/10.1039/c3ce40445e
- Q. Yang, X. Chen, Z. Chen, Y. Hao, Y. Li, Q. Lua and H. Zheng, "Metal-organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system", Chem. Commun. 48 (2012) 10016. https://doi.org/10.1039/c2cc35340g
- D.M.L. Goodgame, S. Menzer, A.M. Smith and D.J. Williams, "Formation of interwoven or partially interwoven metallomacrocyclic networks in copper(II) or zinc(II) complexes with N,N'-p-phenylenedimethylenebis(pyridin-4-one)", J. Am. Chem. Soc., Chem. Commun. 19 (1995) 1975.
- L.D.C. Bok, J.G. Leipoldt and S.S. Basson, "The preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O", Anorg. Allg. Chem. 415 (1975) 81. https://doi.org/10.1002/zaac.19754150111
- P. Hu, Z. Sun, X. Wang, L. Li, D. Liao and D. Luneau, "Magnetic relaxation in mononuclear Tb complex involving a nitronyl nitroxide ligand", New J. Chem. 38 (2014) 4716. https://doi.org/10.1039/c4nj00627e