DOI QR코드

DOI QR Code

Synthesis and characterization of the two-fold interpenetrated Tb(III)-based metal-organic framework

이중 상호 침투 구조를 갖는 신규 터븀(III) 기반 금속-유기 골격체의 합성 및 특성연구

  • Song, Jeong Hwa (Dept. of Advanced Materials & Chemical Engineering, Halla University)
  • 송정화 (한라대학교 신소재화학공학과)
  • Received : 2022.10.13
  • Accepted : 2022.10.31
  • Published : 2022.12.31

Abstract

A new two-fold interpenetrating two-dimensional (2D) Tb(III) metal-organic framework (MOF), [Tb(p-XBP4)2.5(H2O)2]·W(CN)8 (1), was prepared using a p-XBP4 (N,N'-p-phenylenedimethylenbis(pyridin-4-one)), Cs3[W(CN)8], and Tb(NO3)3·6H2O. The single crystal X-ray diffraction indicated that Tb-MOF exhibits a unique two-fold interpenetrating 2-D framework. It was also characterized through Fourier transform infrared spectroscopy (FTIR), and single and powder X-ray diffraction. To probe the molecular magnetic behavior, the magnetic properties of Tb-MOF were investigated by direct-current (DC) and alternating-current (AC) magnetic susceptibilities measurements and discussed.

p-XBP4 (N,N'-p-phenylenedimethylenbis(pyridin-4-one)), Cs3[W(CN)8]와 Tb(NO3)3·6H2O를 사용하여 2차원의 이중 상호 침투 구조를 갖는 새로운 Tb-MOF인 [Tb(p-XBP4)2.5(H2O)2]·W(CN)8를 합성하였다. 단결정 X선 회절 분석법으로 얻어진 구조 정보를 통해 Tb-MOF는 이중 상호 침투된 독특한 2차원 구조임을 확인하였다. 또한, 적외선 분광 분석법, 단결정 및 분말 X-선 회절 분석법을 활용하여 추가적인 특성 분석을 수행하였다. Tb-MOF가 갖는 자성 특성과 분자 자석으로서의 거동 가능성을 조사하기 위해, 직류 자화율 및 교류 자화율을 측정하고 이를 분석하였다.

Keywords

Acknowledgement

본 논문은 한국연구재단의 생애 첫 연구사업(과제번호: 2021R1G1A1094963)의 지원을 받아 수행된 연구 결과입니다.

References

  1. H.C. Zhou, J.R. Long and O.M. Yaghi, "Introduction to metal-organic frameworks", Chem. Rev. 112 (2012) 673. https://doi.org/10.1021/cr300014x
  2. S.L. James, "Metal-organic frameworks", Chem. Soc. Rev. 32 (2003) 276. https://doi.org/10.1039/b200393g
  3. S.T. Meek, J.A. Greathouse and M.D. Allendorf, "Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials", Adv. Mater. 23 (2011) 249. https://doi.org/10.1002/adma.201002854
  4. M. Gharib, V. Safarifard and A. Morsali, "Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitro aromatic sensing", Ultrason. Sonochem. 42 (2018) 112. https://doi.org/10.1016/j.ultsonch.2017.11.009
  5. Z. Zhang, Q. Yang, X. Cui, L. Yang, Z. Bao, Q. Ren and H. Xing, "Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving", Angew. Chem. Int. Ed. 56 (2017) 16282. https://doi.org/10.1002/anie.201708769
  6. L. Liu, Z. Yao, Y. Ye, Q. Lin, S. Chen, Z. Zhang and S. Xiang, "Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration", Cryst. Growth. Des. 18 (2018) 3724. https://doi.org/10.1021/acs.cgd.8b00545
  7. V. Gupta and S.K. Mandal, "A robust and water-stable two-fold interpenetrated metal-organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture", Dalton. Trans. 48 (2019) 415. https://doi.org/10.1039/c8dt03844a
  8. Z.Q. Shi, Z.J. Guo and H.G. Zheng, "Two luminescent Zn(ii) metal-organic frameworks for exceptionally selective detection of picric acid explosives", Chem. Commun. 51 (2015) 8300. https://doi.org/10.1039/c5cc00987a
  9. H.L. Jiang, T.A. Makal and H.C. Zhou, "Interpenetration control in metal-organic frameworks for functional applications", Coord. Chem. Rev. 257 (2013) 2232. https://doi.org/10.1016/j.ccr.2013.03.017
  10. R. Haldar, N. Sikdar and T.K. Maji, "Interpenetration in coordination polymers: structural diversities toward porous functional materials", Mater. Today 18 (2015) 97. https://doi.org/10.1016/j.mattod.2014.10.038
  11. Y.N. Gong, D.C. Zhong and T.B. Lu, "Interpenetrating metal-organic frameworks", Cryst. Eng. Comm. 18 (2016) 2596. https://doi.org/10.1039/C6CE00371K
  12. L. Ohrstrom, "Let's talk about MOFs - Topology and terminology of metal-orrganic frameworks and why we need them", Crystals 5 (2015) 154. https://doi.org/10.3390/cryst5010154
  13. M. Frank, M.D. Johnstone and G.H. Clever, "Interpenetrated cage structures", Chem. Eur. J. 22 (2016) 14104. https://doi.org/10.1002/chem.201601752
  14. R. Zhu, J. Ding, L. Jin and H. Pang, "Interpenetrated structures appeared in supramolecular cages, MOFs, COFs", Coord. Chem. Rev. 389 (2019) 119. https://doi.org/10.1016/j.ccr.2019.03.002
  15. O.M. Yaghi, "A tale of two entanglements", Nat. Mater. 6 (2007) 92. https://doi.org/10.1038/nmat1824
  16. D. Zhao, D.J. Timmons, D. Yuan and H.C. Zhou, "Tuning the topology and functionality of metal-organic frameworks by ligand design", Acc. Chem. Res. 44 (2011) 123. https://doi.org/10.1021/ar100112y
  17. A.B. Cairns and A.L. Goodwin, "Structural disorder in molecular framework materials", Chem. Soc. Rev. 42 (2013) 4881. https://doi.org/10.1039/c3cs35524a
  18. N.C. Burtch and K.S. Walton, "Modulating adsorption and stability properties in pillared metal-organic frameworks: a model system for understanding ligand effects", Acc. Chem. Res. 48 (2015) 2850. https://doi.org/10.1021/acs.accounts.5b00311
  19. L. Carlucci, G. Ciani, D.M. Proserpio, T.G. Mitina and V.A. Blatov, "Entangled two-dimensional coordination networks: a general survey", Chem. Rev. 114 (2014) 7757.
  20. O. Kwon, S. Park, H.C. Zhou and J. Kim, "Computational prediction of hetero-interpenetration in metal-organic frameworks", Chem. Commun. 53 (2017) 1953. https://doi.org/10.1039/C6CC08940B
  21. X. He, X.-P. Lu, Y.-Y. Tian, M.-X. Li, S. Zhu, F. Xing and R.E. Morris, "Controlling interpenetration in metal-organic frameworks by tuning the conformations of flexible bis(triazole) ligands", CrystEngComm. 15 (2013) 9437. https://doi.org/10.1039/c3ce40445e
  22. Q. Yang, X. Chen, Z. Chen, Y. Hao, Y. Li, Q. Lua and H. Zheng, "Metal-organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system", Chem. Commun. 48 (2012) 10016. https://doi.org/10.1039/c2cc35340g
  23. D.M.L. Goodgame, S. Menzer, A.M. Smith and D.J. Williams, "Formation of interwoven or partially interwoven metallomacrocyclic networks in copper(II) or zinc(II) complexes with N,N'-p-phenylenedimethylenebis(pyridin-4-one)", J. Am. Chem. Soc., Chem. Commun. 19 (1995) 1975.
  24. L.D.C. Bok, J.G. Leipoldt and S.S. Basson, "The preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O", Anorg. Allg. Chem. 415 (1975) 81. https://doi.org/10.1002/zaac.19754150111
  25. P. Hu, Z. Sun, X. Wang, L. Li, D. Liao and D. Luneau, "Magnetic relaxation in mononuclear Tb complex involving a nitronyl nitroxide ligand", New J. Chem. 38 (2014) 4716. https://doi.org/10.1039/c4nj00627e