DOI QR코드

DOI QR Code

포화된 경사 사질토 지반의 액상화 수치모델 거동평가

Evaluation of Liquefaction Model using Dynamic Centrifuge Test

  • Lee, Jin-Sun (Dept. of Civil and Environmental Engrg., Wonkwang Univ.) ;
  • Lee, Sang-Un (Dept. of Civil and Environmental Engrg., Wonkwang Univ.)
  • 투고 : 2022.08.23
  • 심사 : 2022.10.12
  • 발행 : 2022.11.30

초록

본 논문에서는 원심모형시험을 이용한 국제공동연구인 LEAP-2017의 결과를 이용하여 액상화 수치모델의 거동에 대한 검증을 실시하였다. 동적원심모형시험은 Ottawa F-65모래로 수면 아래 조성된 경사각 5°의 지반에 1Hz 테이퍼형 사인파를 가진하여 시행되었다. 원심모형시험의 원형스케일로 모델링 된 수치해석 모델은 유한차분법을 이용한 2차원 및 3차원 해석을 시행하였다. 수치해석의 검증은 깊이별 가속도와 간극수압 시간이력, 잔류변위에 대해 이루어 졌다. 검증결과, 모든 모델에서 시험과 유사한 가속도 시간이력을 나타내었으나, 일부모델이 나타내는 간극수압의 변화는 시험결과와 차이를 나타내었다. 수치해석결과로 나타난 액상화 후 잔류변위는 원심모형시험 대비 매우 작은 크기로 확인되어, 이에 대해서는 추후 LEAP-2017에 참여한 다른 기관의 시험결과와 비교분석이 필요한 것으로 확인되었다.

This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

키워드

과제정보

이 연구는 "한국연구재단 이공분야기초연구사업(2021R1A2C1008534)" 및 국토교통과학기술진흥원의 "지반함몰 및 액상화에 관한 지하안전 위험도평가 고도화기술개발"사업의 지원에 의해 수행되었습니다.

참고문헌

  1. Bastidas, A.M.P. (2016), Ottawa F-65 sand characterization, Ph. D Dissertation. UC Davis.
  2. Beaty, M.H. and Byrne, P.M. (2011), UBCSAND constitutive model version 904aR. Documentation Report, UBCSAND constitutive model. https://www.itascacg.com/software/udm-library/ubcsand
  3. Byrne, P.M. (1991), "A Cyclic Shear-volume Couping and Porepressure Model for Sand", Proceedings of Second International Conference on Recent Adyances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No.1,24, pp.47-55.
  4. Cheng, Z. (2018), "A Practical 3D Bounding Surface Plastic Sand Model for Geotechnical Earthquake Engineering Application", Geotechnical Earthquake Engineering and Soil Dynamics (GEESD) Congress V, June 10-13, Austin, Texas, United States.
  5. Choo, Y.W. and Kim, D.S. (2005), "Dynamic Deformation Characteristicsof Sands Under Various Drainage Conditions", Journal of the Korean Geotechnical Society, Vol.21, No.3, pp.27-42.
  6. Dafalias Y.F. and Manzari, M.T. (2004), "Simple Plasticity sand Model Accounting for Fabric Change Effects", Journal of Engineering Mechanics, ASCE, doi:10.1061/(ASCE)073 3-9399(2004)130:6(622).
  7. Dokainish, M.A. and Subbaraj, K.A. (1988), "Survey of Direct Time-integration Methods in Computational Structural Dynamics-i. Explicit Methods", Computers and Structures, Vol.32, pp.1371-1386, doi:10.1016/0045-9749(89)9031.
  8. Itasca Consulting Group (2021), computer software, http://www.itascacg.com
  9. Kim, D.S. and Stokoe, K.H. (1994), "Torsional Motion Monitoring System for Small-Strain (10-5 to 10-3%) Soil Testing", Geotechnical Testing Journal, Vol.17, No.1, 1994, pp.17-26, https://doi.org/10.1520/GTJ10068J.
  10. Kim, J.H., Choo, Y.W., and Kim, D.S. (2017a), "Correlation between the Shear-wave Velocity and Tip Resistance of Quartz Sand in a Centrifuge", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.11, doi:10.1061/(ASCE)GT.1943-56 06.0001782
  11. Kim, S.N., Lee, M.G., Ha, J.G., Kim, J.H., and Kim, D.S. (2017), "Comparison of Liquefaction behavior with Different Relative Density Using Centrifuge Test", Proceedings of The 30th KKHTCNN Symposium on Civil Engineering, National Taiwan University, Taipei, Taiwan.
  12. Kutter, B.L. and Wilson, D.W. (1999), "Deliquefaction Shock Waves", In Proceedings of the 7th US-Japan Workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction. Seattle. 295-310.
  13. Kutter, B., Zeghal, M., and Manzari, M. (2018), "LEAP-UCD-2017 Experiments (Liquefaction Experiments and Analysis Projects)", DesignSafe-CI [publisher]. Dataset, doi:10.17603/DS2N10S
  14. Kutter, B., Carey, T., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., et al. (2017), "LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons", Soil Dynamics and Earthquake Engineering, Vol.113, pp.1-13, doi:10.1016/j.soildyn.2017. 05.018.
  15. Kutter, B. et al. (eds.) (2020), Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017, Springer, doi:10.1007/978-3-030-22818-7_4
  16. Lee, J.S., Kim, S.N., and Kim, D.S. (2019), "Evaluation of the Numerical Liquefaction Model behavior with Drainage Condition", Journal of the Korean Geotechnical Society, Vol.35, No.11, pp.63-74, doi:10.7843/kgs.2019.35.11.63
  17. Manzari, M.T. et al. (2018), "Liquefaction Experiment and Analysis Projects (LEAP): Summary of Observations from the Planning Phase", Soil Dynamics and Earthquake Engineering, Vol.113, pp.714-743, doi:10.1016/j.soildyn.2017.05.015 5.
  18. Martin, G.R., Finn, W.D.L., and Seed, H.B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical Engineering Division, ASCE, Vol.101, (GT5), pp.423-438. https://doi.org/10.1061/AJGEB6.0000164
  19. Mejia, L.H. and Dawson, E.M. (2006), "Earthquake Deconvolution for FLAC", Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0-9767577-0-2.
  20. Schofield, A.N. (1980), "Cambridge Geotechnical Centrifuge Operations, Twentieth Rankine Lecture", Geotechnique, Vol.30, No.3, pp.227-68. http://dx.doi.org/10.1680/geot. 1980.30.3.227.
  21. Tsegaye, A.B. (2010), Liquefaction model(UBC3D), Report No. 1, Plaxis B.V. Delft, Netherlands. https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/46116/ubcsand3d-model