DOI QR코드

DOI QR Code

무선전력 통신 네트워크에서 최적의 멀티홉 전송 방식

An Optimal Multi-hop Transmission Scheme for Wireless Powered Communication Networks

  • Choi, Hyun-Ho (School of ICT, Robotics & Mechanical Engineering, Hankyong National University)
  • 투고 : 2022.10.11
  • 심사 : 2022.10.24
  • 발행 : 2022.11.30

초록

본 논문에서는 무선전력 통신 네트워크에서 소스에서 목적지 노드까지 종단간 데이터 전송률을 최대화하기 위한 최적의 멀티홉 전송 방식을 제안한다. 에너지 하베스팅을 하면서 멀티홉 전송을 위한 프레임 구조를 제시하고, 노드간 서로 다른 에너지 수확량과 링크 품질을 고려하여 종단간 전송률을 최대화하는 각 노드의 전송 시간을 수학적 분석을 통하여 도출한다. 아울러, 고려하는 무선전력기반 멀티홉 전송의 시스템 모델링을 통하여 최적화 문제를 도출하고, 이 최적화 문제가 convex 함을 보임으로써 전역 최적해가 존재함을 증명한다. 이를 통하여 최적화 문제를 계산 가능한 형태로 변형하여 손쉽게 최적해를 찾는다. 제안한 최적 멀티홉 전송 방식은 모든 링크의 전송률이 같아지도록 노드별 전송 시간을 최적으로 할당함으로써 종단간 전송률을 최대화한다.

In this paper, we propose an optimal multi-hop transmission scheme to maximize the end-to-end data rate from the source to the destination node in a wireless powered communication network. The frame structure for multi-hop transmission is presented to transmit multi-hop data while harvesting energy. Then, the transmission time of each node that maximizes the end-to-end transmission rate is determined through mathematical analysis in consideration of different harvested energy and link quality among nodes. We derive an optimization problem through system modeling of the considered wireless powered multi-hop transmission, and prove that there is a global optimal solution by verifying the convexity of this optimization problem. This analysis facilitates to find the optimal solution of the considered optimization problem. The proposed optimal multi-hop transmission scheme maximizes the end-to-end rate by allocating the transmission time for each node that equalizes the transmission rates of all links.

키워드

과제정보

This work was supported by a research grant from Hankyong National University in the year of 2022).

참고문헌

  1. A. Costanzo, D. Masotti, G. Paolini, and D. Schreurs, "Evolution of SWIPT for the IoT World: Near- and Far-Field Solutions for Simultaneous Wireless Information and Power Transfer," IEEE Microwave Magazine, vol. 22, no. 12, pp. 48-59, Dec. 2021. https://doi.org/10.1109/MMM.2021.3109554
  2. X. Zhou, R. Zhang, and C. K. Ho, "Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff," IEEE Transaction on Communications, vol. 61, no. 11, pp. 4754-4767, Nov. 2013. https://doi.org/10.1109/TCOMM.2013.13.120855
  3. Q. Shi, L. Liu, W. Xu, and R. Zhang, "Joint transmit beamforming and receive power splitting for MISO SWIPT systems," IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp. 3269-3280, Jun. 2014. https://doi.org/10.1109/TWC.2014.041714.131688
  4. Z. Zong, H. Feng, F. R. Yu, N. Zhao, T. Yang, and B. Hu, "Optimal Transceiver Design for SWIPT in K-user MIMO Interference Channels," IEEE Transaction on Wireless Communications, vol. 15, no. 1, pp. 430-445, Jan. 2016. https://doi.org/10.1109/TWC.2015.2474857
  5. A. Sirojuddin and W. J. Huang, "Sum-Rate Maximization in Two-Way MIMO Cooperative Networks With an Energy Harvesting Relay," IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 3664-3677, Jun. 2022. https://doi.org/10.1109/TWC.2021.3123217
  6. N. Ashraf, S. A. Sheikh, S. A. Khan, I. Shayea, and M. Jalal, "Simultaneous Wireless Information and Power Transfer With Cooperative Relaying for Next-Generation Wireless Networks: A Review," IEEE Access, vol. 9, pp. 71482-71504, May 2021. https://doi.org/10.1109/ACCESS.2021.3078703
  7. C. H. Lin and K. H. Liu, "Relay Selection for Energy-Harvesting Relays With Finite Data Buffer and Energy Storage," IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11249-11259, Jul, 2021. https://doi.org/10.1109/JIOT.2021.3053290
  8. E. Chen, M. Xia, D. B. da Costa, and S. Aissa, "Multi-Hop Cooperative Relaying with Energy Harvesting From Cochannel Interferences," IEEE Communications Letters, vol. 21, no. 5, pp. 1199-1202, May 2017. https://doi.org/10.1109/LCOMM.2017.2655039
  9. S. He, K. Xie, W. Chen, D. Zhang, and J. Wen, "Energy-Aware Routing for SWIPT in Multi-Hop Energy-Constrained Wireless Network," IEEE Access, vol. 6, pp. 17996-18008, Mar. 2018. https://doi.org/10.1109/access.2018.2820093
  10. H. H. Choi, "Lifetime Maximization with Cooperative Wireless Energy Sharing in Wireless Multi-Hop Communications," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 11, pp. 1550-1553, Nov. 2020. https://doi.org/10.6109/JKIICE.2020.24.11.1550
  11. C. Motz, T. Paireder, H. Pretl, and M. Huemer, "A Survey on Self-Interference Cancellation in Mobile LTE-A/5G FDD Transceivers," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 823-829, Mar. 2021. https://doi.org/10.1109/TCSII.2021.3051101
  12. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, UK, 2004.
  13. H. H. Choi, "Resource Allocation for Maximizing End-to-End Throughput in Wireless Powered Multihop Networks," Journal of Korean Institute of Communications and Information Sciences, vol. 44, no. 12, pp. 2219-2222, Dec. 2019. https://doi.org/10.7840/kics.2019.44.12.2219