DOI QR코드

DOI QR Code

DVB-S2-based T4 class common data link performance improvement plan for UAV system application

무인기 체계 적용을 위한 DVB-S2 기반 T4급 공용데이터링크 성능 개선방안

  • Received : 2022.09.30
  • Accepted : 2022.10.17
  • Published : 2022.12.31

Abstract

The sophistication and diversification of mission equipment for surveillance and reconnaissance is leading to a demand for large-capacity public data links. Overseas, a T4 class(274Mbps) common data link was applied to the Global hwak, a high-altitude unmanned aerial vehicle, and various research and development are being conducted in Korea. In this paper, we propose a structure in which pilot is additionally applied to improve SNR performance while minimizing data transmission rate loss in the DVB-S2 frame structure, which is a european satellite broadcasting standard, for high-capacity transmission of T4 class or higher in the common data link. For the performance evaluation of the proposed structure, the performance of the DVB-S2 was compared and analyzed by simulating the UAV data link channel environment. As a result of simulation, 0.15% of transmission rate loss occurred at T4 class transmission rate compared to DVB-S2 in the proposed structure, but improved SNR reception performance of 0.2~0.3dB was confirmed in the UAV channel environment.

감시정찰을 위한 임무장비의 고도화와 다변화는 공용데이터링크의 대용량화에 대한 요구로 이어지고 있다. 해외에서는 고고도 무인기인 Global hawk에 T4급(274Mbps) 공용데이터링크가 적용되었고, 국내에서도 다양하게 연구개발 중이다. 본 논문에서는 공용데이터링크의 T4급 이상의 대용량 전송을 위해 유럽 위성방송 규격인 DVB-S2 프레임 구조에 데이터 전송속도 손실을 최소화하면서 SNR 성능을 향상시킬 수 있도록 파일럿을 추가 적용한 구조를 제안한다. 제안하는 구조의 성능평가를 위해, 무인기 데이터링크 채널 환경을 모사하여 DVB-S2와 성능을 비교분석하였다. 시뮬레이션 결과 제안된 구조에서 DVB-S2 대비하여 T4급 전송속도에서 0.15% 전송속도의 손실이 발생하였지만, 무인기 채널 환경에서 0.2~0.3dB의 향상된 SNR 수신성능을 확인하였다.

Keywords

References

  1. W. P. Kang, J. H. Song, K. H. Lee, D. H. Lee, S. J. Jung, and H. J. Choi, "Analysis of Common Data Link Technology Trends for the Next Generation Korean Common Data Link Development," The Journal of Korean Institute of Communications and Information Sciences, vol. 39C, no. 3, pp. 209-222, Mar. 2014. https://doi.org/10.7840/kics.2014.39C.3.209
  2. S. J. Jung, Y. G. Kim, and D. H. Lee, "Design and Performance Analysis of Common data link digital modem for surveillance UAVs," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 1, pp. 162-168, Jan. 2018. https://doi.org/10.6109/JKIICE.2018.22.1.162
  3. ETSI, Digital Video Broadcasting(DVB); Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2), European Telecommunication Standard Institute, ETSI EN 302 307-1 V1.4.1, Jul. 2014.
  4. ETSI, Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-S2X), European Telecommunication Standard Institute, ETSI EN 302 307-2 V1.3.1, Apr. 2021.
  5. D. I. Jang, D. G. Oh, and H. J. Lee, "Technology Trends and Applications of the DVB-S2," Broadcasting and Media Magazine, vol. 13, no. 3, pp. 4-21, Sep. 2008.
  6. W. Hu, Z. Wang, R. Mei, and M. Lin, "An Efficient Carrier Synchronization Scheme for Demodulation Systems," Electronics, vol. 10, no. 23, pp.1-10, Nov. 2021.
  7. ETSI, Digital Video Broadcasting (DVB); Interaction channel for Satellite Distribution Systems; Guidelines for the use of EN 301 790 in mobile scenarios, European Telecommunication Standard Institute, ETSI TR 102 768 V1.1.1, Apr. 2009.
  8. E. Haas, "Aeronautical Channel Modeling," IEEE Transactions on Vehicular Technology, vol. 51, no. 2, pp. 254-264, Mar. 2002. https://doi.org/10.1109/25.994803
  9. W. Khawaja, I. Guvenc, D. W. Matolak, U. C. Fiebig, and N. Schneckenberger, "A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2361 - 2391, May. 2019. https://doi.org/10.1109/COMST.2019.2915069
  10. J. S. Yang, T. C. Shin, and M. H. Lee, "MIMO Channel Diagonalization: Linear Detection ZF, MMSE," The Journal of the Institute of Internet, Broadcasting and Communication, vol. 16, no. 1, pp. 15-20, Feb. 2016. https://doi.org/10.7236/JIIBC.2016.16.1.15
  11. C. U. Baek, A. H. Lee, D. H. Lee, and J. W. Jung, "A Soft Decision Decoding Method of LDPC-Coded M-ary Pulse Position Modulated Signals in Underwater Laser Communication," The Journal of Korean Institute of Communications and Information Sciences, vol. 43, no. 11, pp. 1798-1801, Nov. 2018. https://doi.org/10.7840/kics.2018.43.11.1798
  12. S. R. Be, S. M. Moon, S. H. Kwon, H. S. Kim, B. G. Song, and I. T. Hwan, "Improved Data Detection Scheme in 5G Mobile Communication System," Journal of The Institute of Electronics and Information Engineers, vol. 56, no. 2, pp. 130-137, Feb. 2019.