DOI QR코드

DOI QR Code

Effects of Surface Treatment of Cathode Materials on the Electrodeposition Behavior of Fe-Ni Alloy

표면처리와 전극 재료가 철-니켈 합금 도금에 미치는 영향

  • Kang, Na Young (Department of Materials Science and Engineering, Hongik University) ;
  • Lee, Jae Ho (Department of Materials Science and Engineering, Hongik University)
  • 강나영 (홍익대학교 신소재공학과) ;
  • 이재호 (홍익대학교 신소재공학과)
  • Received : 2022.12.21
  • Accepted : 2022.12.26
  • Published : 2022.12.30

Abstract

In this research, Fe-Ni alloy films were electrodeposited on stainless steel (SS304 and SS430) and Ti plates to investigate the effects of surface conditions of cathode on deposits. The Ti plates were electropolished in 3 M H2SO4-methanol electrolytes at various conditions before electrodeposition, and unpolished Ti and the optimized specimen, polished at 10 V for 8 min, were used as cathode. The anomalous codeposition, the phenomenon which more active Fe is reduced preferentially, occurred on all substrate, however, there were differences in composition of all deposits. As the results of potential monitoring during electrodeposition, it was confirmed that the larger overpotential was applied to the deposition cell when using Ti cathode, leading to high Fe content of deposits from unpolished Ti due to increase in nucleation of Fe. Also, it was founded that the polished Ti can reduced deposition overpotential.

본 연구에서는 환원전극 기판이 철-니켈 합금 도금에 미치는 영향을 알아보기 위해 경면 스테인리스강(SS304, SS430)과 티타늄 판을 환원전극으로 사용해 도금을 진행했으며, 티타늄의 경우 3M 황산-메탄올 용액에서 전압과 연마시간을 조절하여 찾은 최적의 시편(10 V, 8 분)과 표면 처리하지 않은 시편을 사용하였다. 도금층의 조성을 분석한 결과, 스테인리스강과 티타늄 기판에서 니켈보다 환원 경향성이 낮은 철이 먼저 환원되는 비정상 도금 현상이 관찰되었으나 도금층의 앞면과 뒷면의 조성 불균일이 확인되었다. 도금 중 포텐셜 변화를 관찰한 결과, 스테인리스강보다 티타늄을 사용했을 때 도금 셀에 높은 과전압이 걸렸으며, 이로 인해 철의 핵생성 속도가 증가해 과전압이 가장 높았던 표면처리를 하지 않은 티타늄에서 형성된 도금층 뒷면의 철 함량이 높아진 것으로 보인다. 또한 티타늄을 기판을 표면 처리했을 때 셀에 걸린 과전압이 낮아진 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 한국연구재단 기초연구(NRF 2021R1F1A1060048)와 나노소재기술개발사업(No 2021M3H4A3A02098099) 지원을 받아 수행된 연구임.

References

  1. J. M. Quemper, S. Nicolas, J. P. Gilles, J. P. Grandchamp, A. Bosseboeuf, T. Bourouina, and E. Dufour-Gergam, "Permalloy electroplating through photoresist molds", Sens. Actuators, A, 74(1-3), 1-4 (1999). https://doi.org/10.1016/S0924-4247(98)00323-9
  2. Y. H. Zhang, G. F. Ding, Y. L. Cai, H. Wang, and B. Cai, "Electroplating of low stress permalloy for MEMS", Mater. Charact., 57(2), 121-126 (2006). https://doi.org/10.1016/j.matchar.2005.12.016
  3. H. V. Venkatasetty, "Electrodeposition of Thin Magnetic Permalloy Films", J. Electrochem. Soc., 117(3), 403-407 (1970). https://doi.org/10.1149/1.2407524
  4. Y. Nakamura, "The invar problem", IEEE Trans. Magn., 12(4), 278-291 (1976). https://doi.org/10.1109/TMAG.1976.1059049
  5. W. D. Callister Jr and D. G. Rethwisch, Materials science and engineering, 9th Ed., p.741 John Wiley & Sons, New Jersey (2014).
  6. C. Kim, K. Kim, O. Kwon, J. Jung, J. K. Park, D. H. Kim, and K. Jung, "Fine metal mask material and manufacturing process for high-resolution active-matrix organic light-emitting diode displays", J. Soc. Inf. Disp., 28(8), 668-679 (2020). https://doi.org/10.1002/jsid.901
  7. T. Nagayama, T. Yamamoto, T. Nakamura, and Y. Mizutani, "Fabrication of low CTE metal masks by the Invar Fe-Ni alloy electroforming process for large and fine pitch OLED displays", ECS Trans., 50(52), 117-122 (2013). https://doi.org/10.1149/05052.0117ecst
  8. A. Li, Z. Zhu, Y. Liu, and J. Hu, "Ultrasound-assisted electrodeposition of Fe-Ni film for OLED mask", Mater. Res. Bull., 127, 110845 (2020). https://doi.org/10.1016/j.materresbull.2020.110845
  9. S. N. Srimathi, S. M. Mayanna, and B. S. Sheshadri, "Electrodeposition of binary magnetic alloys", Surf. Technol., 16(4), 277-322 (1982). https://doi.org/10.1016/0376-4583(82)90021-8
  10. T. Nagayama, T. Yamamoto, and T. Nakamura, "Thermal expansions and mechanical properties of electrodeposited Fe-Ni alloys in the Invar composition range", Electrochim. Acta, 205, 178-187 (2016). https://doi.org/10.1016/j.electacta.2016.04.089
  11. S. H. Kim, H. J. Sohn, Y. C. Joo, Y. W. Kim, T. H. Yim, H. Y. Lee, and T. Kang, "Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy", Surf. Coat. Technol., 199(1), 43-48 (2005). https://doi.org/10.1016/j.surfcoat.2004.11.035
  12. C. W. Su, F. J. He, H. Ju, Y. B. Zhang, and E. L. Wang, "Electrodeposition of Ni, Fe and Ni-Fe alloys on a 316 stainless steel surface in a fluorborate bath", Electrochim. Acta, 54(26), 6257-6263 (2009). https://doi.org/10.1016/j.electacta.2009.05.076
  13. Y. Yang, "Preparation of Fe-Co-Ni ternary alloys with electrodeposition", Int. J. Electrochem. Sci., 10(6), 5164-5175 (2015). https://doi.org/10.1016/S1452-3981(23)06694-4
  14. O. Piotrowski, C. Madore, and D. Landolt, "Electropolishing of titanium & titanium alloys in perchlorate-free electrolytes", Plat. Surf. Finish., 85(5), 115-119 (1998).
  15. D. Landolt, "Fundamental aspects of electropolishing", Electrochim. (1987).
  16. A. Sanaty-Zadeh, K. Raeissi, and A. Saidi, "Properties of nanocrystalline iron-nickel alloys fabricated by galvano-static electrodeposition", J. Alloys Compd., 485(1-2), 402-407 (2009). https://doi.org/10.1016/j.jallcom.2009.05.119
  17. A. Karpuz, H. Kockar, M. Alper, O. Karaagac, and M. Haciismailoglu, "Electrodeposited Ni-Co films from electrolytes with different Co contents", Appl. Surf. Sci., 258(8), 4005-4010 (2012). https://doi.org/10.1016/j.apsusc.2011.12.088
  18. A. Brenner, Electrodeposition of alloys: principles and practice, Volume I, pp.77-78 Academic Press, New York (1963).
  19. A. Afshar, A. G. Dolati, and M. Ghorbani, "Electrochemical characterization of the Ni-Fe alloy electrodeposition from chloride-citrate-glycolic acid solutions", Mater. Chem. Phys., 77(2), 352-358 (2003). https://doi.org/10.1016/S0254-0584(02)00017-2
  20. K. Fukuda, Y. Kashiwa, S. Oue, T. Takasu, and H. Nakano, "Effects of Electrolysis Conditions on the Formation of Electrodeposited Invar Fe-Ni Alloys with Low Thermal Expansion". ISIJ Int., 59(9), 1632-1641 (2019). https://doi.org/10.2355/isijinternational.isijint-2019-023