DOI QR코드

DOI QR Code

Effects of P2O5-doped on the Surface of MgO Particles for Hydrolysis, Water Repellency, and Insulation Behavior

MgO입자 표면에 도핑된 P2O5가 가수분해, 발수성, 그리고 절연거동에 미치는 영향

  • Choi, Jin Sam (Division of Industry-University Convergence Business, Ulsan Industry-University Convergence Institute)
  • 최진삼 ((사)울산산학융합원 산학연융합사업팀)
  • Received : 2022.08.30
  • Accepted : 2022.11.18
  • Published : 2022.12.10

Abstract

The effects of P2O5-doped on the surface of MgO particles on hydrolysis, water repellency, and insulation behavior were investigated. P2O5-doped MgO has exhibited a unique electrical property, which is significant insulation behavior due to both the suppression of the hydrolysis reaction by P2O5 and water repellency. Therefore, the insulation behavior was inversely proportional to the hydrophilicity and the Mg(OH)2 and OH-charge transfer ratio by the surface hydration reaction of MgO. The insulation of MgO according to aging was strongly influenced by the surface hydration reaction, the band gap of the added dopant species, and the hydrophilicity and hydrophobicity of the dopant. Finally, it was to show electrical insulation by inhibiting the surface hydration reaction of the hydrophilic MgO, which has a great potential for use in heat transfer medium applications.

MgO 입자 표면에 첨가된 P2O5의 가수분해, 발수성, 그리고 절연 거동에 미치는 영향을 조사하였다. MgO 표면에 첨가된 P2O5는 가수분해반응 억제와 발수성을 동시에 나타내기 때문에 독특한 절연거동을 나타내었다. 따라서 절연거동은 MgO의 표면수화반응에 의한 Mg(OH)2와 OH-전하 전달비와 친수성에 반비례하였다. 시효에 따른 MgO의 절연성은 표면수화반응, 첨가된 도펀트 종의 밴드갭, 그리고 도펀트의 친수성과 소수성에 강한 영향성과 의존성을 나타내었다. 마지막으로 친수성인 MgO의 표면수화반응을 억제하는 전기절연성을 발현하여 열전달매체 응용분야에서 큰 잠재력을 제공하는 것으로 나타났다.

Keywords

Acknowledgement

This work was supported by the Technology development Program (S3262188) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. W. T. Rawles, Sheathed electric heater insulating material, US Patent 2,669,636 (1954).
  2. A. J. Slifka, B. J. Filla, and J. M. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol., 103, 357-363 (1998). https://doi.org/10.6028/jres.103.021
  3. E. G. Derouane, J. G. Fripiat, and Andre, Theoretical evaluation of the possibility of hydrogen release during thermal activation of hydrated MgO surfaces, Chem. Phys. Lett., 28, 445-448 (1974). https://doi.org/10.1016/0009-2614(74)80387-8
  4. P. J. Anderson, R. F. Holock, and J. F. Oliver, Interaction of water vapour with the magnesium oxide surface, Trans. Farad. Soc., 61, 2745-2762 (1965).
  5. J. Yang, S. Lu, and L. Wang, Fused magnesia manufacturing process : a survey, J. Intell. Manuf., 31, 327-350 (2020). https://doi.org/10.1007/s10845-018-1448-1
  6. I. O. Wilson, Magnesium oxide as a high-temperature insulant, IEEE Proc. A, 128, 159-164 (1981).
  7. H. Yun, T. Lee, and Y. Hwang, The effect of V2O5 addition on the microwave dielectric properties of Zn3Nb2O8 ceramics, Korean J. Cryst., 17, 24-32 (2006).
  8. J. Ha, M. Jang, and Y. Hwang, Environmental fate and effect of ZnO nanoparticles, J. Korean Soc. Environ. Eng., 39, 418-425 (2017). https://doi.org/10.4491/KSEE.2017.39.7.418
  9. R. Martens, H. Gentsch, and F. Freund, Hydrogen release during thermal decomposition of magnesium hydroxide to magnesium oxide, J. Catal., 44, 366-372 (1976). https://doi.org/10.1016/0021-9517(76)90413-9
  10. S. P. Mitoff, Electronic and ionic conductivity in single crystals of MgO, J. Chem. Phys., 36, 1383-1389 (1962). https://doi.org/10.1063/1.1732744
  11. P. Varshney, S. S. Mohapatra, and A. Kumar, Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process, Inter. J. Smart Nano Mater., 7, 248-264 (2016). https://doi.org/10.1080/19475411.2016.1272502
  12. J. J. Thomas, S, Musso, and I. Prestini, Kinetics and activation energy of magnesium oxide hydration, J. Amer. Ceram. Soc., 97, 275-282 (2014). https://doi.org/10.1111/jace.12661
  13. E. G. Derouane, J. G. Fripiat, and J. M. Andre, Theoretical evaluation of hydroxyl stretching frequencies for hydrogen chemisorbed on MgO, Chem. Phys. Lett., 35, 525-528 (1975). https://doi.org/10.1016/0009-2614(75)85658-2
  14. R. W. Davidge, The distribution of iron impurity in single crystal magnesium oxide and some effects on mechanical properties, J. Mater. Sci., 2, 339-346 (1967). https://doi.org/10.1007/BF00572417
  15. R. Stefan, D. Simedru, and A. Popa, Structural investigations of V2O5- P2O5-CaO glass system by FT-IR and EPR spectroscopies, J. Mater. Sci., 47, 3746-3751 (2012). https://doi.org/10.1007/s10853-011-6225-x
  16. J. Choi, D. Jeong, D. Shin, and W. Bae, Effect of an additive on the physical and electrical properties of the B2O3-ZnO-Bi2O3 glass system for a sheath heater module, J. Korean. Ceram. Soc., 50, 238-243 (2013). https://doi.org/10.4191/kcers.2013.50.3.238
  17. A. Ziletti, A. Carvalho, P. E. Trevisanutto, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, Phosphorene oxides: Bandgap engineering of phosphorene by oxidation, Phys. Rev. B, 91, 085407, 1-12 (2015). https://doi.org/10.1103/physrevb.91.085407
  18. U. Schonberger and F. Aryasetiawan, Bulk and surface electronic structures of MgO, Phys. Rev. B, 52, 8788-8793 (1995). https://doi.org/10.1103/physrevb.52.8788
  19. S. Lany, Band-structure calculations for the 3d transition metal oxides in GW, Phys. Rev. B, 87, 085112, 1-9 (2013). https://doi.org/10.1103/physrevb.87.085112
  20. E. O. Filatova and A. S. Konashuk, Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries, J. Phys. Chem., 119, 20755-20761 (2015).