References
- J. Porras et al., PERCCOM: A master program in pervasive computing and communications for sustainable development, in Proc. IEEE Int. Conf. Sotw. Eng. Education Trainng (Dallas, TX, USA), Apr. 2016, pp. 204-212.
- European Large-Scale Pilots Programme, IoT european large-scale pilots programme, Tech. report, 2018.
- McKinsey Global Institute, The internet of things: Mapping the value beyond the hype, Tech. report, 2015.
- G. Pasolini et al., Smart city pilot projects using LoRa and IEEE802.15.4 technologies, Sensors 18 (2018), 1-17. https://doi.org/10.3390/s18010001
- J. Petajajarvi et al., On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology, in Proc. Int. Conf. ITS, Telecommun. (Copenhagen, Denmark), Dec. 2015, pp. 55-59.
- T. Petric' et al., Measurements, performance and analysis of LoRa FABIAN, a real-world implementation of LPWAN, in Proc. IEEE Annu. Int. Symp. Personal, Indoor, Mobile Radio Commun. (Calencia, Spain), Sept. 2016, pp. 1-7.
- M. Bor, J. Vidler, and U. Roedig, LoRa for the Internet of Things, in Proc. Int. Conf. Embedded Wireless Syst. Netw. (Graz, Austria), Feb. 2016, pp. 361-366.
- K. E. Nolan, W. Guibene, and M. Y. Kelly, An evaluation of low power wide area network technologies for the Internet of Things, in Proc. Int. Wireless Commun. Mobile Comput. Conf. (Paphos, Cyprus), Sept. 2016, pp. 439-444.
- L. Feltrin et al., LoRaWAN: Evaluation of link- and system-level performance, IEEE Internet Things J. 5 (2018), 2249-2258. https://doi.org/10.1109/JIOT.2018.2828867
- L. Gregora, L. Vojtech, and M. Neruda, Indoor signal propagation of LoRa technology, in Proc. Conf. Antenna Meas. Applicat. (Tsukuba, Japan), Dec. 2017, pp. 13-16.
- S. Hosseinzadeh et al., Empirical propagation performance evaluation of LoRa for indoor environment, in Proc. IEEE Int. Conf. Ind. Inform. (Emden, Germany), July 2017, pp. 26-31.
- P. Neumann, J. Montavont, and T. Noel, Indoor deployment of lowpower wide area networks (LPWAN): A LoRaWAN case study, in Proc. IEEE Int. Conf. Wireless Mobile Comput. Netw. Commun. (New York, NY, USA), Oct. 2016, pp. 1-8.
- K. Mikhaylov et al., Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring, in Proc. Int. Symp. Medical Inf. Commun. Technol. (Worcester, MA, USA), Mar. 2016, pp. 1-5.
- D. M. Hernandez et al., Energy and coverage study of LPWAN schemes for industry 4.0, in Proc. IEEE Int. Workshop Electron, Contr. Meas. Signals Applicat. Mechatronics (Donostia-San Sebastian, Spain), May 2017, pp. 1-6.
- S. Bandyopadhyay and E. Coyle, An energy efficient hierarchical clustering algorithm for wireless sensor networks, in Proc. Annu. Joint Conf. IEEE Comput. Commun. Soc. (San Francisco, CA, USA), 2003, pp. 1713-1723.
- M. Chatterjee, S. K. Das, and D. Turgut, An on-demand weighted clustering algorithm (WCA) for ad hoc networks, in Proc. IEEE Global Telecommun. Conf. Record (San Francisco, CA, USA), 2000, pp. 1697-1701.
- T. Divoux, J.-P. Georges, and S. Harchi, A session protocol for wireless sensor networks, application to oil spills monitoring, Comput. Electr. Eng. 48 (2015), 312-329. https://doi.org/10.1016/j.compeleceng.2015.06.015
- W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, in Proc. Annu. Hawaii Int. Conf. Syst. Sci. (Maui, HI, USA), Jan. 2000, pp. 1-10.
- H. Long et al., Energy-efficient spatially-adaptive clustering and routing in WSNs, in Proc. Des. Autom. Test Eur. Conf. Exhibition (Nice, France), Apr. 2009, doi: 10.1109/DATE.2009.5090860.
- J. Huang et al., A novel deployment scheme for green internet of things, IEEE Internet Things J. 1 (2014), 196-205. https://doi.org/10.1109/JIOT.2014.2301819
- F. Van Den Abeele et al., Scalability analysis of large-scale LoRaWAN networks in ns-3, IEEE IoT J. 4 (2017), 2186-2198.
- D. Magrin, M. Centenaro, and L. Vangelista, Performance evaluation of LoRa networks in a smart city scenario, in Proc. IEEE Int. Conf. Commun. (Paris, France), May 2017, pp. 1-7.
- F. Vannieuwenborg, S. Verbrugge, and D. Colle, Choosing IoT-connectivity? a guiding methodology based on functional characteristics and economic considerations, Trans. Emerging Telecommun. Technol. 29 (2018), no. 5, e3308:1-10.
- M. Rady, M. Hafeez, and S. A. Raza Zaidi, Computational methods for network-aware and network-agnostic iot low power wide area networks (LPWANs), IEEE Internet Things J. 6 (2019), 5732-5744. https://doi.org/10.1109/jiot.2019.2905134
- E. Bjornson et al., Multiobjective signal processing optimization: The way to balance conflicting metrics in 5G systems, IEEE Signal Process. Mag. 31 (2014), no. 6, 14-23. https://doi.org/10.1109/MSP.2014.2330661
- P. Piunti et al., Energy efficient adaptive cellular network configuration with QoS guarantee, in Proc. IEEE Int. Conf. Commun. (London, UK), June 2015, pp. 68-73.
- D. H. P. Kang, M. Chen, and O. A. Ogunseitan, Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste, Environ. Sci. Technol. 47 (2013), 5495-5503. https://doi.org/10.1021/es400614y
- B. Martinez et al., The power of models: Modeling power consumption for iot devices, IEEE Sens. J. 15 (2015), 5777-5789. https://doi.org/10.1109/JSEN.2015.2445094
- Ile-De-France, Qualite de service de la telephonie mobile sur les lieux de vie.
- C. Phillips, D. Sicker, and D. C. Grunwald, The Stability of the Longley-Rice Irregular Terrain Model for Typical Problems;CU-CS-1086-11, Tech. report, 2011.
- Semtech Corporation, Sx1272/73 Datasheet, Tech. Report March, 2017.