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1  |   INTRODUCTION

Low-power wide-area network (LPWAN) architectures 
have been studied extensively to evaluate their general per-
formance limits, such as scalability, range, and penetration 
in urban environments, and use-case-specific performance 
limits. Dense deployments of such networks incorporat-
ing several thousands of end devices (EDs) have begun to 
emerge, and billions of these devices are expected to be 
connected with increased penetration of the Internet of 
things (IoT) [2–4]. Most LPWAN deployments follow the 
star or connected-stars topology. This is a departure from 
the mesh multi-hop topology, which is classically assumed 
in wireless sensor networks or cellular topology. Radios of 
LPWAN architectures rely on extremely low bitrate with 

long-range connectivity reaching several kilometers in urban 
areas or tens of kilometers in rural areas depending on line-
of-sight conditions. Moreover, these devices consume very 
low power, allowing them to provide connectivity in hard-
to-reach areas while being powered by batteries for several 
years. As this is a nascent technology, state-of-the-art studies 
have reported several empirical accounts of its performance 
in different experimental settings. However, the increasing 
scale of LPWAN, as outlined in [4], creates a demand for 
metrology to estimate the operational costs of LPWAN ar-
chitectures. Furthermore, the dependability on various kinds 
of batteries as primary energy sources necessitates the es-
timation of the environmental footprint of such massive 
deployments. In addition, planning the assignment of user 
equipment to gateways (GWs) is a complex problem, given 
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the heterogeneity of the operational costs of different user 
equipment EDs. For instance, EDs in a massive LPWAN de-
ployment in a connected-star topology usually have different 
application configurations, radio configurations, sensor con-
figurations, battery capacities, battery costs, battery recharge 
cycles (durability), and optionally, operator subscription 
costs. In such a case, the following questions are of interest:

•	 How can the real cost of the network be estimated?
•	 What is the expected environmental footprint of the net-

work, given the chemical properties of ED batteries?
•	 What is the energy, financial, and environmental impact of 

changing any of the ED configurations?
•	 How can nodes be assigned to GWs such that the total 

network cost is minimized while respecting the minimum 
quality-of-service (QoS) constraints of the network?

•	 Does an optimal energy cost always lead to an optimal bud-
get or environmental footprint?

The remainder of this section presents a background of 
the work related to these questions. The rest of this paper 
is organized as follows. Section  2 outlines the formal the-
oretical models for the optimization of network budget and 
environmental footprint. Section  3 outlines the scenarios 
and parameters of our experimental setup and the simulation 
framework implementing the theoretical models in MATLAB 
(following an ns-3 paradigm). Section 4 presents the results 
and comparative analysis. The results are discussed in sec-
tion 5. Finally, the conclusion is presented in section 6.

1.1  |  Related Work in LPWAN Performance 
Analysis and Simulation

Several studies have examined the performance of different 
LPWANs in real settings. The authors of [5–8] reported LoRa 
link RSSIs, whereas the authors of [9] reported packet suc-
cess rates for different link configurations in outdoor settings. 
The authors of [10–12] performed various measurements 
of the indoor performance of LoRa EDs. The study in [13] 
evaluated the LoRa performance for health monitoring with 
human indoor mobility. The study in [14] evaluated LPWAN 
schemes for Industry 4.0; the authors investigated the SigFox 
transmitter in an indoor setting with an attached open-door 
sensor as a representation of an industrial trigger scenario.

On the optimization front, several clustering approaches 
have been proposed for optimizing energy saving in the net-
work such as in [15–19]. An optimization model for mini-
mizing network energy consumption was proposed in [20] 
considering sensor monetary cost, but without providing a 
comprehensive definition of operational expenditure (OpEx) 
monetary cost while explicitly ignoring the energy consump-
tion of non-radio components such as sensing of EDs.

On the simulation front, the scalability of LoRaWAN was sim-
ulated in [21] using discrete-event simulations in ns-3. The study in 
[22] proposed an ns-3 simulation extension for LoRaWAN, which 
provides QoS estimations based on LoRaWAN characteristics.

There is a gap in the literature regarding generic metrics 
for reporting and optimizing the cost of the network, as ex-
isting studies only focus on the energy consumption of EDs; 
therefore, it is not possible to evaluate the final costs of entire 
architectures, irrespective of their heterogeneous configura-
tions. Accordingly, the following subsection provides a back-
ground on LPWAN costs and economy.

1.2  |  Background on LPWAN Economy

The network cost consists of OpEx and capital expenditure 
(CapEx). A comparative study [23] presented both aspects 
of LPWAN costs. OpEx generally varies according to the 
deployment configuration, especially in massive-scale de-
ployments spanning thousands of nodes. Therefore, it is a 
complex characteristic of network architecture. However, 
hardware CapEx is generally a one-time cost that varies by 
manufacturer and market dynamics; therefore, it is out of 
the scope of this study. OpEx estimation is the focus of this 
study, assuming a fixed CapEx throughout our analysis.

Batteries are essential cost elements of LPWAN OpEx 
and the environmental footprint, as LPWAN EDs are pow-
ered by batteries. Lithium-ion (Li-ion) rechargeable batteries 
are often used as energy sources.

Operator subscription fee is another cost element in de-
ployments that rely on operator sinks such as NB-IoT or 
commercial LoRaWAN operators. Existing solutions that 
may relay packets from GW to any standard APIs through 
WiFi, Ethernet, or GSM back haul are available. However, 
they are only usable if the network owners have their own 
network servers. Otherwise, the alternative is to utilize third-
party applications, which incur an additional license cost.

Furthermore, LPWAN systems are often rolled out as end-
to-end solutions where sensor data can be obtained using either 
subscription to an operator's cloud services (such as SigFox, 
Senet in the U.S. for LoRaWAN, and LoRIoT) or through a 
private aggregation GW and server such as Meshlium GW 
for Libelium. In both cases, the cost of the network includes 
subscription to the application access, which is the only way 
to decode and analyze the received data.

1.3  |  Novelty compared with State-of-the-art 
Green IoT Deployment

Concerning the optimization aspect of IoT deployments, the 
study in [20] represented state-of-the-art green IoT hierarchical 
deployments using an optimization model that considers budget 
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constraints. The optimization method is formulated as a con-
strained linear optimization model subject to data rate constraints 
and budget constraints. The budget model considers only the mon-
etary cost of the IoT devices (ie, CapEx). The network hierarchy 
is computed as a Steiner tree (with link energy consumption as 
the weights of the edges). The Steiner tree formulation determines 
the least energy-expensive link assignment in the deployment. 
Furthermore, the approach presumes that any energy consump-
tion apart from radio energy (including sensing) is negligible.

The approach in this study is distinct in three aspects: from 
realistic, budgetary, and optimization points of view. First, from 
a realistic point of view, [20] considered abstract IoT layouts 
and presumed that nodes of each category (ie, EDs or GWs) 
have the same wireless properties. Non-radio activities (such 
as sensing) were also excluded from the analysis, thus simpli-
fying the problem. However, in reality, device properties could 
be heterogeneous in aspects such as application configuration, 
network headers, battery capacity and durability, subscriber 
costs, and attached sensor energy consumption. Therefore, such 
a heterogeneous configuration was not handled by the previ-
ous study. In contrast, this study considers a real LPWAN set-
ting with long-range radios and relies on real measurements 
of energy consumption and a wireless simulation in a realistic 
geographical setting. Moreover, the object-oriented simulation 
framework proposed and implemented in this study based on 
our models offers an optimization model for link assignment by 
considering heterogeneous ED configurations. In addition, both 
the model and simulation framework consider the comprehen-
sive energy performance aspects of the ED including non-radio 
components. This study shows that a simple tuning of non-radio 
components, such as sensing, while possibly having a negligi-
ble impact compared with transmission in a sufficiently large 
network, can have a budget impact equivalent to an employee's 
monthly salary, as demonstrated in the results in Section 4.

Second, from a budgetary point of view, the optimization 
model in [20] assumed the monetary cost of devices as the 
sole factor in the budget. Furthermore, while the Steiner tree 
approach would determine the least energy-expensive topol-
ogy, there is an implicit assumption that less network energy 
indicates a lower network budget. However, as GW capac-
ity is constrained, EDs may not always be able to commu-
nicate with the closest GW and may use higher energy for 
longer range modulation. Therefore, the optimization method 
needs to consider GW capacity as an optimization constraint. 
In this context, optimal energy consumption in the network 
does not necessarily indicate an optimal network budget. 
This is because the real cost of energy depends on the cost 
of the battery deployed and the cost of battery replacement 
(the manual labor included), especially for devices located in 
remote areas, as is common with LPWANs. Such a change in 
assumption indicates that it is possible to have higher energy 
consumption in the network but with a lower budget. In con-
trast, a comprehensive budget model is proposed, including 

several operational expenses, such as battery change costs, 
operator subscriber costs, and battery costs. The results in 
Section 4 show that the optimization model of link assign-
ment provides better budget-efficient planning that considers 
all the complex budget parameters. Consequently, the optimi-
zation model presented here adapts network topology based 
on more complex and realistic budget factors.

Third, from an optimization point of view, [20] considered 
the budget parameter as a linear constraint for a Steiner tree 
formulation, which is an NP-hard approach (as explained by 
the authors). However, the integer linear programing (ILP) 
model presented in this article, which is an extension of [24], 
considered the network OpEx as an optimization objective. 
Therefore, it is guaranteed to determine the network link as-
signment with the global optimal OpEx budget. Furthermore, 
approaches for optimizing the performance based on multiple 
objective optimization (MOO) were discussed [25,26]. While 
MOO can find the optimal tradeoff among weighted param-
eters if it exists, our optimization approach is distinct from 
MOO, as we demonstrate the findings of several optimization 
objectives separately to provide a panoramic view of the per-
formance under each objective. This separated approach al-
lows gauging the positive or negative correlations among the 
optimization parameters, as is later demonstrated in the results.

Fourth, this study introduces another metric for measur-
ing the environmental footprint of massive-scale LPWAN 
architectures. Normally, the quantity of CO2 emissions is the 
commonly used metric for measuring the environmental foot-
print. However, as LPWANs are mostly battery-powered, the 
hazardous solid waste of disposed batteries is a more direct 
metric of the footprint of LPWANs, according to the study in 
[27]. Instead of CO2 emissions, we refer to the human toxicity 
parameter (HTP) as an indicator of the environmental foot-
print, as deduced in this study. Thus, the HTP of the network 
depends on the battery specifications of each ED, the appli-
cation configuration of each ED, and the network configura-
tion. Therefore, this parameter can be used for the evaluation 
and optimization of the network. This can have significant 
utility in the case of massive LPWAN deployments, which 
contain batteries with chemical waste of the order of magni-
tude of tons, as demonstrated in our results section.

1.4  |  Contributions

To address the questions and the knowledge gap in the litera-
ture, this paper presents the following contributions:

•	 Mathematical formulations of the OpEx cost model and 
environmental footprint model for LPWAN architectures 
are presented. They estimate the total network costs and 
the environmental footprint considering heterogeneous 
configurations. The performances of these models are 
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demonstrated by investigating multiple simulation scenar-
ios in a realistic setup.

•	 An extension of the ILP model in [24] is presented. It is 
proven to find optimal ED to GW link assignment in terms 
of minimal link budget in the network; however, we apply 
it to various cost parameters of the network: OpEx, energy, 
HTP, and total time-on-air in the network.

•	 Finally, the analysis shows a conflict among the optimi-
zation objectives in our simulated scenarios. Strict energy 
optimization is shown to lead to potentially higher costs 
and even environmental footprint of the network. The re-
sults also demonstrate that, in a large-scale network, sig-
nificant budget and environmental savings can be achieved 
through a minor network configuration such as removing 
a timestamp, adding a few GWs, or reducing the sensor 
sampling frequency without changing the transmission 
configuration.

2  |   THEORETICAL FRAMEWORK

This section proposes the main theoretical framework, which 
consists of 1) the energy model, 2) the environmental cost 
model, and 3) the budget optimization model.

2.1  |  Energy model

A commonly used energy model is considered, adapted from 
[28]. This considers energy consumption in the four compo-
nents of a sensor node: processing unit that is, Eproc, n I/O 
tasks, m attached sensors, and k transmissions, each of size 

bi bits using the energy per transmission bit ETi. The total 
energy EED is expressed in (1).

In the following subsections, we expand this model to a 
budget estimation model and to an environmental footprint 
estimation model.

2.2  |  Financial cost model

The OpEx model is generally a superposition of the OpEx of 
the four components of the ED: radio, processing, sensing, 
and IO, as outlined in Figure 1. While energy consumption is 
important, the effective ED OpEx depends on battery specifi-
cations, price, link subscription cost, and application up-link 
traffic size. Hence, two main financial cost items are consid-
ered in the model: the ED cost per Wh, expressed as CWh, and 
the communication cost per bit transmission.

CWh is expressed in (2) as a function of the battery price 
Bcost, battery recharge cycles (assuming rechargeable battery) 
Brc, battery installation cost Bic, and battery Wh capacity BWh.

The communication cost is expressed through a function � 
that returns the cost invoiced by the provider for the smallest 
link capacity supporting the throughput requirement repre-
sented by Bitstotal, the number of bits to be transmitted on the 
link during the period.

From (1), (2), and the definition of the function �, an 
OpEx model for a given ED can be formalized as in (3).

The metric OpExED expresses the total OpEx of an ED 
with a given specification as defined in (1). This parameter 
is used as a network optimization objective to minimize the 
OpEx budget of the entire network, as shown in Section 2.4.

2.3  |  Environmental cost model

This subsection proposes an environmental footprint model 
based on the hazards originating from the solid waste of Li-
ion batteries, which are a main source of energy for EDs. 
A general outline of how waste is estimated for a given ED 
configuration is shown in Figure 2.

The expected battery life before disposal is a major de-
terminant of the expected waste. This study aims to estimate 
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this parameter based on Eday (energy per day), Brc, and BWh, 
as expressed in (4).

The total quantity of expected chemical waste (in grams) 
resulting from the operation of an ED for a given OpEx dura-
tion can be estimated as in (5) as a function of battery weight 
in grams Bw and battery lifetime.

For a further detailed evaluation, an existing study pro-
vides the average estimations of chemical substance waste 
percentage per Li-ion battery grams [27]. These estimations 
are expressed in (6).

Based on these percentages, the HTP of an ED can be 
evaluated as expressed by the authors in [27]. Hence, such 
a parameter can also be applied to an optimization model to 
minimize the environmental footprint of the network. This is 
illustrated in the following subsection.

2.4  |  Network budget optimization model

After the cost matrix � is obtained for all combinations of n EDs 
and m GWs (eg, OpEx or HTP), the optimal network cost can be 
obtained according to a certain objective parameter by optimizing 
the link selection. The typical link assignment procedure considers 
only the link budget at the ED, as in a recent study [24]. However, 
we employ the same ILP formulation and use the model to provide 
the optimal network link selection according to various param-
eters: minimizing the total network OpEx, PNet; minimizing the 
total HTP of the network, HTPNet; minimizing the total network 
energy consumption, ENet, and minimizing the total time-on-air in 
the network, ToANet.

Therefore, the model is formulated in (8) and a linear con-
straint is imposed on the number of EDs per GW≤N such 
that no GW will be assigned more than N EDs. Another con-
straint is imposed such that an ED will be assigned a maxi-
mum of one GW.

where ��� is the cost parameter of link�� between EDi and GWj.  
expressed as (��� ∈ℝ) and is one of the cost parameters: P��, HTP��, 
E��, or ToA��. E is the number of EDs, G is the number of GWs, and 
Nj is the maximum possible capacity of EDs for GWj. With such a 
formalization, the global optimal solution for a given LPWAN de-
ployment, if it exists, can be obtained as follows.

The  following  section demonstrates the experimental 
setup where this optimization model is implemented and de-
ployed. The model performance is tested under different situ-
ations and with heterogeneous settings.

3  |   EXPERIMENTATION

The setup is shown in Figure 3. We obtain real coordinates 
of approximately 2000 long-term evolution (LTE) base sta-
tions (BSs) of Orange mobile operator in the Paris region, 
which are available through the Open Data of Île-de-France 
[29].
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The deployment sites are assumed to contain LoRaWAN 
EDs with CO2 gas sensors and electric current sensors. A few 
BSs are selected as GWs (marked by large pins) and the re-
maining will act as ED locations covering the Paris region 
(marked by small dots). All the GWs are assumed to have 
a limited capacity of 400 EDs per GW. Our OpEx model is 
supported with empirically calibrated link energy profiles 
for LoRa modulations at the spreading factors (SFs) ranging 
between 7 and 12, a bandwidth of 125 kHz, and a transmit 
power of + 14 dBm. The southern half of EDs (in blue dots) 
is assigned low-durability Li-ion batteries with a weight of 
130 gm and a capacity of 27.7 Wh, priced at 6€ with 380 re-
charge cycles. The northern half (in yellow dots) has high-du-
rability batteries with a weight of 50 gm and a capacity of 
12.24 Wh, priced at 22€ with 500 recharge cycles. Both have 
the same replacement cost.

3.1  |  Experiment Design and Setup

The default setup assumes that all the devices transmit elec-
tric current sensor readings of some critical equipment every 
minute (CO2 measures are provided every hour, a measure-
ment lasting 70s). A packet contains a payload of 120 bytes 
including a timestamp of 10 bytes. The objective of ILP 

optimization is to minimize the total network OpEx. The 
area is assumed to be covered by five GWs as a basic setup 
(marked with white pins).

Four sets of experiments are conducted, as outlined in Table 1. 
The first set of experiments examines the impact of varying the 
ILP objective variable as follows: energy consumption, HTP, 
and time-on-air. The second set examines the impact of using 

F I G U R E  3   Network simulation experiment setup in the Paris 
region

T A B L E  1   Summary of the experiments conducted

Set # Variable parameter Values domain

1 ILP optimization 
objective

{Energy Consumption, HTP, 
Time-On-Air}

2 Durable battery ratio {0%, 50%, 100%}

3 Application 
configuration

{half packet rate, half sensor 
sampling rate, omit 10 byte 
timestamp}

4 Number of GWs 
used in coverage

{5, 9, 13}

F I G U R E  4   Diagram of the flow of the simulation framework to 
estimate network costs
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T A B L E  2   Cost of reference architecture for 365 days

OpEx net 388 301.20

OpEx sensing 30 186.38

User traffic OpEx 328 271.91
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Energy 167.9 kWh
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      |  179RADY et al.

fully low-durability batteries or fully high-durability batteries for 
the entire network compared with the default 50-50 distribution. 
The third set examines the impact of varying the ED application 
configuration in three settings: using half the daily packet rate, 
using half the sensing sampling rate, and omitting the timestamp 
of 10 bytes from the packet payload (which may not be practi-
cal in the case of critical or sensitive applications). Finally, the 
last set of experiments examines the impact of enhancing radio 
coverage on the budget components of the network. Three exper-
imental runs are executed with different levels of coverage: basic 
with 5 GWs (white pins), dense with 9 GWs (white and orange 
pins), and extra dense with 13 GWs (all the pins).

The propagation loss is simulated using the irregular ter-
rain model [30] and our model assigns the lowest possible 
SF profile for each ED based on the RSSI of the ED at the 

GW and based on the RSSI threshold table in [31] for energy 
saving.

For each set of experiments, the OpEx duration is fixed to 
365 days and the normalized estimations are plotted for each 
architecture in six independent dimensions:

•	 OpEx Net (€): total OpEx of the network,
•	 OpEx Sensing (€): total OpEx consumed in sensing,
•	 Energy During OpEx Period (Wh): total energy con-

sumed by the network,
•	 ToA (years): sum of the radio time of all the network links, 

and
•	 Chemical Waste (gms): weight of the total network chem-

ical waste at the end of OpEx duration.

To compare the different scenarios, the cumulative density 
function (CDF) plots for the OpEx of the network are presented 
in the following section. Furthermore, the additional savings/

F I G U R E  5   OpEx estimations for the network according to 
different optimization objectives: (A) CDF of ED OpEx of the network 
with different optimization objectives in the ILP model. (B) Total 
OpEx of the network with different optimization objectives in the ILP 
model
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expenses for each architecture are calculated in relation to the 
reference architecture in Table 3.

3.2  |  Simulation framework

An experimental simulation framework is designed and im-
plemented in MATLAB to simulate the different scenarios in 
the experiment design. The framework accepts as input basic 
network topology descriptors: RSSI matrix (between M EDs 
and N GWs), and the capacity of each GW, expressed as the 
maximum number of EDs that can be handled by each GW. 
Therefore, it becomes possible for the simulation framework 
to be integrated with an existing simulation tool or to be uti-
lized independently.

As shown in Figure 4, the framework considers the pro-
files for different ED components: application profile, sen-
sor profile, radio channel profile, and battery profile. Helper 
classes of each profile provide templates that can be applied 

to multiple EDs in a manner similar to the ns-3 environment 
and to heterogeneous scenarios.

4  |   RESULTS

The cost estimations of the basic setup are presented in 
Table  2. In the first set of experiments, we vary the op-
timization variable while computing the resulting OpEx 
distribution. The results are shown in Figure 5A. The fol-
lowing optimization variables are examined: max-RSSI (as 
proposed in [24]), min-OpEx, min-energy, min-time on 
air, and min-human toxicity. An apparent variation in the 
CDF distribution can be observed, showing how optimiz-
ing each variable leads to different network configurations. 
The total OpEx of the network for the five scenarios is plot-
ted in Figure 5B.

As observed in the plot, minimizing the energy or improv-
ing the RSSI can lead to sub-optimal total network OpEx. All 
the optimization parameters are in conflict with the OpEx 

F I G U R E  7   Network OpEx for different application 
configurations: (A) CDF of ED OpEx of the network for different ED 
configurations. (B) Impact of ED configuration on network budget  
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objective; most notably, an optimal energy consumption in 
the network leads to sub-optimal OpEx costs.

The second set of experiments demonstrates significant 
patterns in the impact of battery physical characteristics on 
the cost of network configurations. The lowest durability bat-
teries lead to a decrease in the network OpEx, as in Figure 
6A, saving the OpEx of nearly €34 K. However, this induces 
higher chemical waste and much shorter battery life-cycle of 
the network, as in Figure 6B. As expected, high-durability 
batteries show better performance in terms of reduced chem-
ical waste (as the lifetime of the node—and therefore the net-
work—is increased), at the expense of increased OpEx of the 
entire network.

In the third set of experiments, the ED configuration is 
shown to contribute significantly to the network OpEx, as 
illustrated in the ED OpEx CDF plot in Figure 7A. It also 
contributes to the overall network performance parameters 
as shown in Figure 7B. It can be observed that cutting the 
packet rate by half (to every 120 seconds instead of 60 sec-
onds) induced the highest improvement of the network in 
terms of all the metrics, leading to the highest savings of 
€179  K of OpEx, 27  kWh of energy, more than 40  years 
of ToA, and nearly 600  gm of chemical waste. Similarly, 
cutting the sensor sampling rate to every 2  hours instead 
of 1 introduced a significant energy saving of €15 K in the 
OpEx. This is in contrast to the assumption in [20] that pre-
sumes negligible sensing cost. The last experiment reduces 
the packet size by 10 bytes (eg, by omitting the timestamp). 
Such a small decrease results in an OpEx saving as high as 
€30 K per year.

Although the energy consumption in the three networks 
is the same, the optimal network OpEx varies due to the bat-
tery specifications of each network. For an optimal OpEx, the 
other parameters such as energy consumption, environmental 
footprint, and air time of each network are compromised.

Reducing the packet inter-arrival rate had the largest 
impact on OpEx optimization and the various performance 

parameters. Header compression by timestamp removal 
showed the next largest impact on OpEx.

In the final experiment, coverage quality is configured 
by increasing the GW density. This contributed to the net-
work OpEx by allowing the use of less expensive ED radio 
configurations to account for radio path loss. Deployment 
of nine GWs instead of five introduced a major enhance-
ment of ED OpEx, as illustrated in the CDF plot in Figure 
8A. However, a minor improvement was achieved when the 
coverage increased to 13 GWs. This suggests that cover-
age beyond nine GWs in this setting may not be necessary 
or desirable for a return on investment. Coverage density 
also contributes to all the financial, environmental, and 
technical metrics, as illustrated in Figure 8B of normalized 
metrics. This coverage enhancement saved €12 K of OpEx, 
27 kWh of energy, 46 years of ToA, and 300 gm of chem-
ical waste.

OpEx and toxicity are conversely related to GW coverage 
density. The change from 9 to 13 GWs produces much less 
improvement than the change from 5 to 9 GWs.

Therefore, the experiments show that the energy op-
timization of the network can incur a financial cost, as 
shown in Figure 5 (in the order of €1 K in this setup). It is 
also shown that RSSI optimization can lead to excess costs 
(in the order of €3  K in this setup). Finally, the experi-
ments prove that the environmental footprint is in conflict 
with both energy and cost parameters, meaning this should 
be independently analyzed while evaluating the network 
performance.

5  |   DISCUSSION

The use of ILP optimization played a significant role in 
minimizing the network OpEx while inducing occasional 
unpredictable side effects. For instance, using homogene-
ous battery deployments (whether high or low durabil-
ity) resulted in an additional ToA cost of 2.22  years of 
the network. This is because, in a heterogeneous battery 
deployment, transmissions from EDs with cheaper (and 
less durable) batteries require a lower budget than that of 
highly durable batteries, even at higher SFs. In this case, 
the ILP assignment model provides the priority of optimal 
link assignment to EDs with greater OpEx to ensure that 
they are connected to the closest GWs. The other EDs can 
still have cheaper connections, even if they consume more 
energy to reach further GWs, as illustrated in Figure 9.

This results in different radio ToA or network lifetime 
from homogeneous deployments where all the nodes have 
the same link OpEx per Joule. In this particular scenario, the 
savings of ToA were more than the additional ToA in the 
basic configuration, resulting in a lower network ToA overall.

F I G U R E  9   Impact of ILP model ED assignment in 
heterogeneous battery deployment  
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Furthermore, all the experiments showed interesting savings 
from the default basic architecture as listed in Table 3. Significant 
energy savings were achieved in all the experiments, reaching up 
to 56 kWh by simply cutting the packet rate by half. Similarly, 
31 kWh of savings were achieved by enhancing coverage without 
changing any of the network or battery configurations.

6  |   CONCLUSION AND FUTURE 
WORK

This study demonstrated how energy saving can be in conflict 
with the cost saving and environmental footprint of the net-
work. As these optimization parameters are in conflict with 
each other, the models for OpEx and footprint estimation allow 
quantifying these complex parameters to enable informed de-
cision-making about network configurations. The study shows 
that the proposed ILP formulation can at least provide a global 
optimal solution for the link assignment problem in terms of 
various objectives to estimate the possible compromises.

The optimization problem can be studied from a multi-ob-
jective perspective in the future to determine the best com-
promise among multiple parameters. Moreover, the OpEx 
calculations in this study are limited to energy consumption 
as a fundamental cost. Future work can include the opera-
tional costs of manpower, infrastructure, and other overheads. 
Furthermore, this study does not consider the impact of me-
dium access control (MAC) behavior in terms of acknowledg-
ment or re-transmissions. This model can provide estimations 
for the OpEx impact using different LoRaWAN classes or 
generally aloha-based MACs vs allocation-based MACs such 
as 802.15.4e. This study does not consider the impact of GW 
OpEx on LPWAN operations, which can be tackled in the 

future. Further work can also explore the environmental sav-
ing of using energy-harvesting modules under different cost 
parameters and with variable probabilities for energy gener-
ation across the year, for example, by using wind and solar 
sources.
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