DOI QR코드

DOI QR Code

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zheng, Wang (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Li, Jianfeng (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Gong, Pan (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Li, Zheng (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2019.05.10
  • Accepted : 2020.02.06
  • Published : 2021.02.01

Abstract

A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Keywords

Acknowledgement

This work is supported by China NSF Grants (61601167,61971217,61631020), the fund of Sonar Technology Key Laboratory (Research on the theory and algorithm of signal processing for two-dimensional underwater acoustics coprime array, Range estimation and location technology of passive target via multiple array combination) and the Fundamental Research Funds for the Central Universities (NT2019013).

References

  1. E. Fishler et al., MIMO radar: An idea whose time has come, in Proc. IEEE Radar Conf. (Philadelphia, PA, USA), Apr. 2004, pp. 71-78.
  2. J. Li and P. Stoica, MIMO radar with colocated antennas, IEEE Signal Process. Mag. 24 (2007), 106-114.
  3. I. Bekkerman and J. Tabrikian, Target detection and localization using MIMO radars and sonars, IEEE Trans. Signal Process. 54 (2006), 3873-3883. https://doi.org/10.1109/TSP.2006.879267
  4. J. Liu, W. Zhou, and F. H. Juwono, Reweighted smoothed l0-norm based DOA estimation for MIMO radar, Signal Process. 137 (2017), 44-51. https://doi.org/10.1016/j.sigpro.2017.01.034
  5. J. Zhang, L. Zhang, and N. Liu, Maximal likelihood DOA estimation of MIMO radar, Syst. Eng. Electron. 31 (2009), 1292-1294. https://doi.org/10.3321/j.issn:1001-506X.2009.06.006
  6. R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag. 34 (1986), 276-280. https://doi.org/10.1109/TAP.1986.1143830
  7. H. Yan, J. Li, and G. Liao, Multitarget identification and localization using bistatic MIMO radar systems, EURASIP J. Adv. Signal Process, 2008 (2007), Article no. 283483: 1-8.
  8. W. Xia and Z. He, Multiple-target localization and estimation of MIMO radars using Capon and APES techniques, in Proc. IEEE Radar Conf. (Rome, Italy), May 2008, pp. 1-6.
  9. X. Zhang and D. Xu, Angle estimation in MIMO radar using reduced-dimension Capon, Electron. Lett. 46 (2010), 860-861. https://doi.org/10.1049/el.2010.0346
  10. X. Zhang and D. Xu, Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation, Electron. Lett. 47 (2011), 283-284. https://doi.org/10.1049/el.2010.3279
  11. S. Marcos and M. Benidir, Source bearing estimation and sensor positioning with the propagator method, in Proc. Annu. Int. Techn. SYmp. Opt. Optoelecotron. Appi. Sci. Eng. (San Diego, CA, USA) 1990, pp. 312-323.
  12. D. Nion and N. D. Sidiropoulos, A PARAFAC based technique for detection and localization of multiple targets in a MIMO radar system, in Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (Taipei, Taiwan), Apr. 2009, pp. 2077-2080.
  13. J. F. Li and D. F. Jiang, Low-complexity propagator based two dimensional angle estimation for coprime MIMO radar, IEEE Access. 6 (2018), 13931-13938. https://doi.org/10.1109/access.2018.2813014
  14. R. Z. Cao, X. F. Zhang, and W. Y. Chen, Compressed sensing parallel factor analysis-based joint angle and doppler frequency estimation for monostatic multiple input multiple output radar, IET Rad. Sonar Nav. 8 (2014), 597-606. https://doi.org/10.1049/iet-rsn.2013.0242
  15. W. Q. Wang, Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays, IEEE Trans. Antennas Propag. 61 (2013), 4073-4081. https://doi.org/10.1109/TAP.2013.2260515
  16. B. B. Li, W. X. Bai, and G. M. Zheng, Successive ESPRIT algorithm for joint doa-range-polarization estimation with polarization sensitive FDA-MIMO radar, IEEE Access 6 (2018), 36376-36382. https://doi.org/10.1109/access.2018.2844948
  17. W. Q. Wang and H. C. So, Transmit subaperturing for range and angle estimation in frequency diverse array radar, IEEE Trans. Signal Process. 62 (2014), 2000-2011. https://doi.org/10.1109/TSP.2014.2305638
  18. X. F. Zhang et al., Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC, IEEE Commun. Lett. 12 (2010), 1161-1163.
  19. J. W. Xu et al., Joint range and angle estimation using MIMO radar with frequency diverse array, IEEE Trans. Signal Process. 63 (2015), 3396-3410. https://doi.org/10.1109/TSP.2015.2422680
  20. P. F. Sammartino, C. J. Baker, and H. D. Griffiths, Frequency diverse MIMO techniques for radar, IEEE Trans. Aerosp. Electron. Syst. 49 (2013), 201-222. https://doi.org/10.1109/TAES.2013.6404099
  21. C. D. Meyer, Matrix analysis and applied linear algebra, SIAM, Philadelphia, PA, USA, 2000.
  22. S. Ahmed, Product-based pulse integration to combat noise jamming, IEEE Trans. Aerosp. Electron. Syst. 50 (2014), 2109-2115. https://doi.org/10.1109/TAES.2014.130322
  23. J. F. Li and M. Zhou, Improved trilinear decomposition-based method for angle estimation in multiple-input multiple-output radar, IET Radar Sonar and Navigat. 7 (2013), 1019-1026. https://doi.org/10.1049/iet-rsn.2012.0345
  24. L. Xu et al., Joint two-dimensional DOA and frequency estimation for L-shaped array via compressed sensing PARAFAC method, IEEE Access 6 (2018), 34204-37213.
  25. L. Y. Xu, F. Q. Wen, and X. F. Zhang, A novel unitary PARAFAC algorithm for joint DOA and frequency estimation, IEEE Commun. Lett. 23 (2019), 660-663. https://doi.org/10.1109/lcomm.2019.2896593
  26. N. J. Ruan et al., A PARAFAC decomposition algorithm for DOA estimation in colocated MIMO radar with imperfect waveforms, IEEE Access 7 (2019), 14680-14688. https://doi.org/10.1109/access.2019.2894747
  27. J. F. Li, and D. F. Jiang, Low-complexity propagator based two dimensional angle estimation for coprime MIMO radar, IEEE Access 6 (2018), 13931-13938. https://doi.org/10.1109/access.2018.2813014
  28. J. F. Li, X. F. Zhang, and C. Han, Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method, Signal Process. 92 (2012), 3032-3038. https://doi.org/10.1016/j.sigpro.2012.06.010
  29. P. Gong, X. F. Zhang, and H. Zhai, DOA estimation for generalized three dimensional coprime arrays: A fast-convergence quadrilinear decomposition algorithm, IEEE Access 6 (2018), 62419-62431. https://doi.org/10.1109/access.2018.2871028
  30. Q. L. Chen, X. F. Zhang, and R. Z. Cao, Fast parallel factor decomposition technique for coherently distributed source localization, J. Syst. Eng. Electron. 29 (2018), 667-675. https://doi.org/10.21629/JSEE.2018.04.01
  31. J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl. 18 (1977), 95-138. https://doi.org/10.1016/0024-3795(77)90069-6
  32. Z. Zhang et al., Decoupled 2D direction of arrival estimation in L-shaped array, IEEE Commun. Lett. 21 (2017), 1989-1992. https://doi.org/10.1109/LCOMM.2017.2708698
  33. C. Zhang, H. Huang, and B. Liao, Direction finding in MIMO radar with unknown mutual coupling, IEEE Access 5 (2017), 4439-4447. https://doi.org/10.1109/ACCESS.2017.2684465
  34. A. Di, Multiple source location: A matrix decomposition approach, IEEE Trans. Acoust. Speech Signal Process. 33 (1985), 1086-1091. https://doi.org/10.1109/TASSP.1985.1164700
  35. X. Jie, W. Q. Wang, and K. D. Gao, FDA-MIMO radar range angle estimation: CRLB, MSE, and resolution analysis, IEEE Trans. Aerosp. Electron. Syst. 54 (2018), 284-294. https://doi.org/10.1109/taes.2017.2756498