DOI QR코드

DOI QR Code

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui (College of Information Engineering, Shanghai Maritime University) ;
  • Wang, Wei (College of Information Engineering, Shanghai Maritime University)
  • Received : 2019.07.14
  • Accepted : 2020.03.02
  • Published : 2021.02.01

Abstract

The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

Keywords

Acknowledgement

This research is supported by the National Key R&D Plan (No. 2018YFC1200200 and 2018YFC1200205) and the National Natural Science Foundation of China (No. 61463016).

References

  1. A. R. Bahrehdar and R. S. Purves, Description and characterization of place properties using topic modeling on georeferenced tags, Geo-Spatial Inf. Sci. 21 (2018), 173-184. https://doi.org/10.1080/10095020.2018.1493238
  2. Z. Jiang et al., Variational deep embedding: An unsupervised generative approach to clustering, in Proc. IJCAI Int. Joint Conf. Artif. Intell. (Melbourne, Australia), 2017, pp. 1965-1972.
  3. M. Caron et al., Deep clustering for unsupervised learning of visual features, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in, Bioinformatics) 2018.
  4. V. Melnykov and R. Maitra, Finite mixture models and model-based clustering, Stat. Surv. 4 (2010), 80-116. https://doi.org/10.1214/09-SS053
  5. L. Qiu, F. Fang, and S. Yuan, Improved density peak clustering-based adaptive Gaussian mixture model for damage monitoring in aircraft structures under time-varying conditions, Mech. Syst. Signal Process. 126 (2019), 281-304. https://doi.org/10.1016/j.ymssp.2019.01.034
  6. G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, Finite Mixture Models, Annu. Rev. Stat. Its Appl. 6 (2019), 355-378. https://doi.org/10.1146/annurev-statistics-031017-100325
  7. C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
  8. A. K. Jain, R. P. W. Duin, and J. Mao, Statistical pattern recognition: A review, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 4-37. https://doi.org/10.1109/34.824819
  9. A. R. Webb, Statistical Pattern Recognition, Wiley, England, vol. 2002.
  10. D. Reynolds, Gaussian mixture models, S. Z. Li, A. Jain (eds) Encyclopedia of Biometrics, Boston, MA, 2009.
  11. D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, Speaker verification using adapted gaussian mixture models, Digit. Signal Process. 10 (2000), 19-41. https://doi.org/10.1006/dspr.1999.0361
  12. J. P. Vila and P. Schniter, Expectation-maximization gaussian-mixture approximate message passing, IEEE Trans. Signal Process. 61 (2013), 4658-4672. https://doi.org/10.1109/TSP.2013.2272287
  13. I. C. McDowell et al., Clustering gene expression time series data using an infinite Gaussian process mixture model, PLoS Comput. Biol. 14 (2018), e1005896. https://doi.org/10.1371/journal.pcbi.1005896
  14. X. Zhu and D. R. Hunter, Clustering via finite nonparametric ICA mixture models, Adv. Data Anal. Classif. 13 (2019), 65-87. https://doi.org/10.1007/s11634-018-0338-x
  15. C. E. Rasmussen, The infinite Gaussian mixture model, Adv. Neural Inf. Process. Syst. 12 (2000), 554-560.
  16. N. Bouguila, D. Ziou, A dirichlet process mixture of generalized dirichlet distributions for proportional data modeling, IEEE Trans. Neural Networks 21 (2010), 107-122. https://doi.org/10.1109/TNN.2009.2034851
  17. D. M. Blei and M. I. Jordan, Variational inference for Dirichlet process mixtures, Bayesian Anal. 1 (2006), 121-144. https://doi.org/10.1214/06-BA104
  18. Y. Yu, M. Li, and Y. Fu, Forest type identification by random forest classification combined with SPOT and multitemporal SAR data, J. For. Res. 29 (2018), 1407-1414. https://doi.org/10.1007/s11676-017-0530-4
  19. H. M. Ebied, K. Revett, and M. F. Tolba, Evaluation of unsupervised feature extraction neural networks for face recognition, Neural Comput. Appl. 22 (2013), 1211-1222. https://doi.org/10.1007/s00521-012-0889-2
  20. T. Wiatowski and H. Bolcskei, A mathematical theory of deep convolutional neural networks for feature extraction, IEEE Trans. Inf. Theory 64 (2018), 1845-1866. https://doi.org/10.1109/tit.2017.2776228
  21. A. Dosovitskiy et al., Discriminative unsupervised feature learning with exemplar convolutional neural networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016), 1734-1747. https://doi.org/10.1109/TPAMI.2015.2496141
  22. W. Zhang et al., Collaborative and adversarial network for unsupervised domain adaptation, in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recogn. (Salt Lake City, UT, USA), 2018, pp. 3801-3809.
  23. A. Pirbonyeh et al., A linear unsupervised transfer learning by preservation of cluster-and-neighborhood data organization, Pattern Anal. Appl. 22 (2019), 1149-1160. https://doi.org/10.1007/s10044-018-0753-9
  24. S. Nejatian et al., An innovative linear unsupervised space adjustment by keeping low-level spatial data structure, Knowl. Inf. Syst. 59 (2019), 437-464. https://doi.org/10.1007/s10115-018-1216-8
  25. Y. W. The et al., Hierarchical Dirichlet processes, J. Am. Stat. Assoc. 101 (2006), 1566-1581. https://doi.org/10.1198/016214506000000302
  26. M. C. Hughes and E. B. Sudderth, Memoized online variational inference for Dirichlet process mixture models, Adv. Neural Inf. Process. Syst. 26 (2013), 2013.
  27. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv e-prints, arXiv: 1409.1556, 2014.
  28. D. Bartholomew, M. Knott, and I. Moustaki, Latent variable models and factor analysis: A unified approach (3rd ed.), Wiley, 2011.
  29. P. D. McNicholas, and T. B. Murphy, Parsimonious Gaussian mixture models, Stat. Comput. 18 (2008), 285-296. https://doi.org/10.1007/s11222-008-9056-0
  30. B. Zhou et al., Places: A 10 million image database for scene recognition, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2018), 1452-1464. https://doi.org/10.1109/tpami.2017.2723009
  31. N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recogn. (San Diego, CA, USA), 2005, pp. 1-8.
  32. T. Ojala, M. Pietikäinen, and T. Maenpaa, Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), 971-987. https://doi.org/10.1109/TPAMI.2002.1017623
  33. A. Rosenberg and J. Hirschberg, V-measure: A conditional entropy-based external cluster evaluation measure, in Proc. Conf. Empir. Methods Nat. Lang. Process. Comput. Nat. Lang. Learn. (Prague, Czech Republic), 2007, pp. 410-420.
  34. N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison: Is a correction for chance necessary?, in Proc. Annu. Int. Conf. Mach. Learn. (Montreal, Canada), 2009, pp. 1-8.
  35. N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance, J. Machine Learn. Res. 11 (2010), 2837-2854.
  36. J. Deng et al., ImageNet: A large-scale hierarchical image database, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Miami, FL, USA), 2009, pp.