Acknowledgement
The research described in this paper was financially supported by the National Science Foundation under award number CMMI-1762999. The authors appreciate the unknown reviewers' input which helped to improve the paper extensively.
References
- Alrasheedi, N.H and Selvam, R.P. (2011), "Tornado forces on different building sizes using computer modeling", 2011 ECTC Proceedings, ASME Early Career Technical Conference, Hosted by ASME District E and University of Arkansas, Fayetteville.
- Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172. https://doi.org/10.1016/j.jweia.2019.02.010.
- Baker, C. and Sterling, M. (2019), "Are tornado vortex generators fit for purpose?" J. Wind Eng. Ind. Aerod., 190, 287-292. https://doi.org/10.1016/j.jweia.2019.05.011.
- Cengel, Y.A. and Cimbala J.M. (2014), Fluid Mechanics: Fundamentals and Applications, McGraw Hill, New York, NY, U.S.A.
- Changnon, S.A. (2009), "Tornado losses in the United States", Nat. Haz. Rev., 10(4), 145-150. https://doi.org/10.1061/(asce)1527-6988(2009)10:4(145)
- Church, C.R., Snow, J.T., Baker, G.L. and Agee E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
- Church, C.R., Snow, J.T. and Agee, E.M. (1977), "Tornado vortex simulation at Purdue University", Bull. Amer. Meteor. Soc., 58(9), 900-909. https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2
- Gairola, A. (2017), Generic Numerical Tornado Model for Common Interpretation of Existing Experimental Simulators, Master's thesis, University of Western Ontario, London, Ontario, Canada.
- Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.
- Gillmeier, S. (2019), An Investigation Concerning the Simulation of Tornado-Like Vortices", Ph.D. Dissertation, University of Birmingham, Birmingham, U.K.
- Gillmeier, S., Sterling, M. and Hemida, H. (2019), "Simulating tornado-like flows: The effect of the simulator's geometry", Meccanica, 54, 2385-2398. https://doi.org/10.1007/s11012-019-01082-4
- Haan Jr. F.L, Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
- Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
- Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at Western University, Canada", Wind Engineers, JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.
- Harlow, F.H. and Stein L.R. (1974), "Structural analysis of tornado-like vortices", J. Atmos. Sci., 31(8), 2081-2098. https://doi.org/10.1175/1520-0469(1974)031<2081:SAOTLV>2.0.CO;2
- Hirt, C.W. and Cook, J.L. (1972), "The calculation of three-dimensional flows around structures and over rough terrain", J. Comput. Phys., 10(2), 324-340. https://doi.org/10.1016/0021-9991(72)90070-8.
- Honerkamp, R., Yan, G. and Synder, J.C. (2020), "A review of the characteristics of tornadic wind fields through observations and simulations", J. Wind Eng. Ind. Aerod., 202, 104195. https://doi.org/10.1016/j.jweia.2020.104195.
- Hu, H., Yang, Z., Sarkar, P. and Haan, F. (2011), "Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds", Exp Fluids, 51, 835. https://doi.org/10.1007/s00348-011-1102-6.
- Ishihara, T., Oh, S. and Tokuyama Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.
- Kashefizadeh, M.H, Verma, S. and Selvam, R.P. (2019), "Computer modelling of close-to-ground tornado wind-fields for different tornado widths", J. Wind Eng. Ind. Aerod., 191, 32-40. https://doi.org/10.1016/j.jweia.2019.05.008.
- Kikitsu H., Okuda Y., Kawai H. and Kanda J. (2012), "Experimental study on characteristics of tornado-induced wind force on a low-rise building", Proceedings of the 22nd National Symposium on Wind Engineering, 209-214. https://doi.org/10.14887/kazekosymp.22.0.209.0.
- Kuai, L., Haan, F.L.J., Gallus, W.A.J. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11(2), 75-96. https://doi.org/10.12989/WAS.2008.11.2.075.
- Lewellen, D.C. and Lewellen, W.S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64(7), 2176-2194. https://doi.org/10.1175/JAS3965.1.
- Lewellen, W.S. and Lewellen, D.C., Sykes, R.I. (1997), "Largeeddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.
- Liu, Z. and Ishihara, T. (2015), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Ind. Aerod., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.
- Matsui, M. and Tamura, Y. (2009), "Influence of swirl ratio and incident flow conditions on generation of tornado-like vortex", Proceedings of EACWE 5, Florence, Italy, July 19th-23rd. https://doi.org/10.1400/116522.
- Mayer, L.J. (2009), Development of a Large-Scale Simulator, Master Thesis, Texas Tech University, Lubbock, U.S.A.
- Mishra, A.R., James, D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96(8-9), 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
- Molloy, S.L. and Mihaltcheva, S. (2013), "1.01 - Extreme weather events". Editor(s): Roger A. Pielke, Climate Vulnerability, Academic Press, 3-16. https://doi.org/10.1016/B978-0-12-384703-4.00103-9.
- Nasir, Z. and Bitsuamlak, G.T. (2016), "Computational modeling of tornadic load on a tall building", CSCE Annual Conference, London Convention Center, London, Ontario, Canada, June.
- Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.
- Refan, M. and Hangan, H. (2016), "Characterization of tornado-like flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121. https://doi.org/10.1016/j.jweia.2016.02.002.
- Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
- Rotunno, R. (1977), "Numerical simulation of a laboratory vortex", J. Atmos. Sci., 34(12), 1942-1956. https://doi.org/10.1175/1520-0469(1977)034<1942:NSOALV>2.0.CO;2.
- Rotunno, R. (1979), "A study in tornado-like vortex dynamics", J. Atmos. Sci., 36(1), 140-155. https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.
- Selvam, R.P. (1997), "Finite element modelling of flow around a circular cylinder using LES", J. Wind Eng. Ind. Aerod., 67-68, 129-139. https://doi.org/10.1016/S0167-6105(97)00068-8.
- Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
- Simmons, K.M. and Sutter D. (2011), Economic and Societal Impacts of Tornado, American Meteorological Society, Boston, U.S.A. https://doi.org/10.1007/978-1-935704-02-7.
- Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018a), "Characteristics of tornado-like vortices simulated in a large scale ward type simulator", Bound. Lay. Meteorol., 166, 327-350. https://doi.org/10.1007/s10546-017-0305-7.
- Tang, Z., Zuo, D., James, D., Eguchi, Y. and Hattori, Y. (2018b), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., 27(2), 111-121. http://dx.doi.org/10.12989/was.2018.27.2.111.
- Verma, S. and Selvam, R.P. (2020), "CFD to VorTECH pressure field comparison & roughness effect on flow", J. Struct. Eng., 146(9), 04020187-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002766.
- Verma, S. and Selvam, R.P. (2021), "Effect of height of the tornado chamber on vortex touchdown", In: Rushi Kumar B., Sivaraj R., Prakash J. (eds) Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4308-1_38.
- Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.
- Yuan, F., Yan, G., Honerkamp, R, Kakkattukuzhy, M.I, Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001.
- Yuan, F., Yan, G., Honerkamp, R., H., Isaac, K.M. and Ruoqiang, F. (2016), "Effects of chamber shape on simulation of tornado-like flow in a laboratory", Wind engineering for natural hazards-modeling, simulation, and mitigation of windstorm impact on critical infrastructure, Reston. https://doi.org/10.1061/9780784415153.ch08.