DOI QR코드

DOI QR Code

CFD model validation with experimental tornado wind field & comparison of wind field in different tornado chambers

  • Verma, Sumit (Department of Civil Engineering, University of Arkansas) ;
  • Selvam, Rathinam P. (Department of Civil Engineering, University of Arkansas)
  • Received : 2021.03.03
  • Accepted : 2021.09.23
  • Published : 2021.11.25

Abstract

Validation of CFD tornado wind field with experimental or field measurements is limited to comparison of tangential velocity profile at certain elevations above the ground level and few studies are based on comparison of pressure profile. However, important tornado vortex features such as touchdown swirl ratio (ST), core radius (rc), maximum tangential velocity (Vtmax), elevation of maximum tangential velocity (zc) and pressure distribution over a range of varying swirl ratios which strongly influences tornado forces on a building have not been accounted for validation of tornado wind field. In this study, important tornado vortex features are identified and validated with experimental measurements; the important tornado features obtained from the CFD model are found to be in reasonable agreement with experimental measurements. Besides, tornado chambers with different geometrical features (such as different outlet size and location and total heights) are used in different works of literature; however, the effect of variation of those key geometrical features on tornado wind field is not very well understood yet. So, in this work, the size of outlet and total height are systematically varied to study the effect on important tornado vortex parameters. Results indicate that reducing outlet diameter in a tornado chamber increases ST, Vtmax and zc and decreases rc. Similarly, increasing total height of tornado chamber decreases ST, Vtmax and rc whereas zc remains nearly constant. Overall, it is found that variation of outlet diameter has a stronger effect on tornado wind field than the variation in total height of tornado chamber.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Science Foundation under award number CMMI-1762999. The authors appreciate the unknown reviewers' input which helped to improve the paper extensively.

References

  1. Alrasheedi, N.H and Selvam, R.P. (2011), "Tornado forces on different building sizes using computer modeling", 2011 ECTC Proceedings, ASME Early Career Technical Conference, Hosted by ASME District E and University of Arkansas, Fayetteville.
  2. Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172. https://doi.org/10.1016/j.jweia.2019.02.010.
  3. Baker, C. and Sterling, M. (2019), "Are tornado vortex generators fit for purpose?" J. Wind Eng. Ind. Aerod., 190, 287-292. https://doi.org/10.1016/j.jweia.2019.05.011.
  4. Cengel, Y.A. and Cimbala J.M. (2014), Fluid Mechanics: Fundamentals and Applications, McGraw Hill, New York, NY, U.S.A.
  5. Changnon, S.A. (2009), "Tornado losses in the United States", Nat. Haz. Rev., 10(4), 145-150. https://doi.org/10.1061/(asce)1527-6988(2009)10:4(145)
  6. Church, C.R., Snow, J.T., Baker, G.L. and Agee E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
  7. Church, C.R., Snow, J.T. and Agee, E.M. (1977), "Tornado vortex simulation at Purdue University", Bull. Amer. Meteor. Soc., 58(9), 900-909. https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2
  8. Gairola, A. (2017), Generic Numerical Tornado Model for Common Interpretation of Existing Experimental Simulators, Master's thesis, University of Western Ontario, London, Ontario, Canada.
  9. Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.
  10. Gillmeier, S. (2019), An Investigation Concerning the Simulation of Tornado-Like Vortices", Ph.D. Dissertation, University of Birmingham, Birmingham, U.K.
  11. Gillmeier, S., Sterling, M. and Hemida, H. (2019), "Simulating tornado-like flows: The effect of the simulator's geometry", Meccanica, 54, 2385-2398. https://doi.org/10.1007/s11012-019-01082-4
  12. Haan Jr. F.L, Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
  13. Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
  14. Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at Western University, Canada", Wind Engineers, JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.
  15. Harlow, F.H. and Stein L.R. (1974), "Structural analysis of tornado-like vortices", J. Atmos. Sci., 31(8), 2081-2098. https://doi.org/10.1175/1520-0469(1974)031<2081:SAOTLV>2.0.CO;2
  16. Hirt, C.W. and Cook, J.L. (1972), "The calculation of three-dimensional flows around structures and over rough terrain", J. Comput. Phys., 10(2), 324-340. https://doi.org/10.1016/0021-9991(72)90070-8.
  17. Honerkamp, R., Yan, G. and Synder, J.C. (2020), "A review of the characteristics of tornadic wind fields through observations and simulations", J. Wind Eng. Ind. Aerod., 202, 104195. https://doi.org/10.1016/j.jweia.2020.104195.
  18. Hu, H., Yang, Z., Sarkar, P. and Haan, F. (2011), "Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds", Exp Fluids, 51, 835. https://doi.org/10.1007/s00348-011-1102-6.
  19. Ishihara, T., Oh, S. and Tokuyama Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.
  20. Kashefizadeh, M.H, Verma, S. and Selvam, R.P. (2019), "Computer modelling of close-to-ground tornado wind-fields for different tornado widths", J. Wind Eng. Ind. Aerod., 191, 32-40. https://doi.org/10.1016/j.jweia.2019.05.008.
  21. Kikitsu H., Okuda Y., Kawai H. and Kanda J. (2012), "Experimental study on characteristics of tornado-induced wind force on a low-rise building", Proceedings of the 22nd National Symposium on Wind Engineering, 209-214. https://doi.org/10.14887/kazekosymp.22.0.209.0.
  22. Kuai, L., Haan, F.L.J., Gallus, W.A.J. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11(2), 75-96. https://doi.org/10.12989/WAS.2008.11.2.075.
  23. Lewellen, D.C. and Lewellen, W.S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64(7), 2176-2194. https://doi.org/10.1175/JAS3965.1.
  24. Lewellen, W.S. and Lewellen, D.C., Sykes, R.I. (1997), "Largeeddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.
  25. Liu, Z. and Ishihara, T. (2015), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Ind. Aerod., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.
  26. Matsui, M. and Tamura, Y. (2009), "Influence of swirl ratio and incident flow conditions on generation of tornado-like vortex", Proceedings of EACWE 5, Florence, Italy, July 19th-23rd. https://doi.org/10.1400/116522.
  27. Mayer, L.J. (2009), Development of a Large-Scale Simulator, Master Thesis, Texas Tech University, Lubbock, U.S.A.
  28. Mishra, A.R., James, D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96(8-9), 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
  29. Molloy, S.L. and Mihaltcheva, S. (2013), "1.01 - Extreme weather events". Editor(s): Roger A. Pielke, Climate Vulnerability, Academic Press, 3-16. https://doi.org/10.1016/B978-0-12-384703-4.00103-9.
  30. Nasir, Z. and Bitsuamlak, G.T. (2016), "Computational modeling of tornadic load on a tall building", CSCE Annual Conference, London Convention Center, London, Ontario, Canada, June.
  31. Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.
  32. Refan, M. and Hangan, H. (2016), "Characterization of tornado-like flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121. https://doi.org/10.1016/j.jweia.2016.02.002.
  33. Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
  34. Rotunno, R. (1977), "Numerical simulation of a laboratory vortex", J. Atmos. Sci., 34(12), 1942-1956. https://doi.org/10.1175/1520-0469(1977)034<1942:NSOALV>2.0.CO;2.
  35. Rotunno, R. (1979), "A study in tornado-like vortex dynamics", J. Atmos. Sci., 36(1), 140-155. https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.
  36. Selvam, R.P. (1997), "Finite element modelling of flow around a circular cylinder using LES", J. Wind Eng. Ind. Aerod., 67-68, 129-139. https://doi.org/10.1016/S0167-6105(97)00068-8.
  37. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
  38. Simmons, K.M. and Sutter D. (2011), Economic and Societal Impacts of Tornado, American Meteorological Society, Boston, U.S.A. https://doi.org/10.1007/978-1-935704-02-7.
  39. Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018a), "Characteristics of tornado-like vortices simulated in a large scale ward type simulator", Bound. Lay. Meteorol., 166, 327-350. https://doi.org/10.1007/s10546-017-0305-7.
  40. Tang, Z., Zuo, D., James, D., Eguchi, Y. and Hattori, Y. (2018b), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., 27(2), 111-121. http://dx.doi.org/10.12989/was.2018.27.2.111.
  41. Verma, S. and Selvam, R.P. (2020), "CFD to VorTECH pressure field comparison & roughness effect on flow", J. Struct. Eng., 146(9), 04020187-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002766.
  42. Verma, S. and Selvam, R.P. (2021), "Effect of height of the tornado chamber on vortex touchdown", In: Rushi Kumar B., Sivaraj R., Prakash J. (eds) Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4308-1_38.
  43. Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.
  44. Yuan, F., Yan, G., Honerkamp, R, Kakkattukuzhy, M.I, Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001.
  45. Yuan, F., Yan, G., Honerkamp, R., H., Isaac, K.M. and Ruoqiang, F. (2016), "Effects of chamber shape on simulation of tornado-like flow in a laboratory", Wind engineering for natural hazards-modeling, simulation, and mitigation of windstorm impact on critical infrastructure, Reston. https://doi.org/10.1061/9780784415153.ch08.