과제정보
이 논문은 2020년도 한국기술교육대학교 교수연구제 파견연구비 지원에 의하여 연구되었음.
참고문헌
- Tesseract OCR [Internet]. Available: https://github.com/tesseract-ocr/tesseract
- X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, J. Yan, "FOTS: Fast Oriented Text Spotting with a Unified Network," arXiv:1801.01671, 2018.
- X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, "EAST: An Efficient and Accurate Scene Text Detector," IEEE Conference on Computer Vision and Pattern Recognition, pp.2642-2651, 2017.
- Y. Baek, B. Lee, D. Han, S. Yun, H. Lee, "Character Region Awareness for Text Detection," IEEE Conference on Computer Vision and Pattern Recognition, pp.9357-9366, 2019
- B. Shi, X. Bai, and C. Yao, "An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition," arXiv:1507.05717, 2015.
- M. Namysl, I. Konya, "Efficient, Lexicon-Free OCR using Deep Learning," 2019 International Conference on Document Analysis and Recognition (ICDAR), pp.295-301, 2019.
- J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S.J. Oh, and H. Lee, "What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis," 2019 IEEE International Conference on Computer Vision, pp.4714-4722, 2019.
- Keras-ocr [Internet]. Available: https://github.com/faustomorales/keras-ocr.
- Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang, Q. Dang, H. Wang, "PP-OCR: A Practical Ultra Lightweight OCR System," arXiv:2009.09941, 2020.
- S. Zherzdev and A. Gruzdev, "LPRNet: License Plate Recognition via Deep Neural Networks," arXiv:1806.10447, 2018.
- OpenVINO Toolkit [Internet]. Available: https://docs.openvinotoolkit.org/latest/index.html.
- K. He, X. Zhang. S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in Proceeding of 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Synthetic data and artificial neural networks for natural scene text recognition. In Workshop on Deep Learning, NIPS, 2014.
- A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for text localisation in natural images. In CVPR, 2016.
- D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," the 3rd International Conference for Learning Representations, San Diego, 2015.