DOI QR코드

DOI QR Code

The in vitro toxicity evaluation of halloysite nanotubes (HNTs) in human lung cells

  • Received : 2020.01.28
  • Accepted : 2020.08.21
  • Published : 2021.07.15

Abstract

Halloysite nanotubes (HNTs) have been increasingly used in many industrial and biomedical fields. Therefore, the assessment of risk and consequences of exposure to HNTs is very important to better protect human safety. This study aims to investigate the short- (24 or 72 h) and long-term (7 days) cytotoxic effects of HNTs at doses 10-200 ㎍/mL on human alveolar carcinoma epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B). The effect of HNTs on cell viability, apoptosis, cell proliferation, oxidative/antioxidative status and cell morphology was evaluated. Our results showed that cytotoxicity of HNTs is dependent on dose, cell model and time of exposure. During the time of exposition toxic effects were intensified. To the best of our knowledge, this is the first study to use holo-tomographic microscopy (HTM) to visualise changes in cell morphology due to exposure from HNTs. We observed cells contraction, changes in the size and shape, cell surface folding and cytoplasmic vacuolization, peripheral arrangement of cell nuclei and even increase number of nucleus, which undoubtedly confirmed cytotoxic effect of HNTs at low doses (5 ㎍/mL and 25 ㎍/mL). Our results demonstrated that HTM technique provides a new insight into the assessment of HNTs toxicity. Further studies with different cell models are recommended to assess the toxic effect of HNTs on whole human body.

Keywords

Acknowledgement

The publication prepared on the results of the research task carried out under the statutory activities of the Central Institute for Labour Protection, National Research Institute (I-55).

References

  1. Koivisto AJ, Bluhme AB, Kling KI et al (2018) Occupational exposure during handling and loading of halloysite nanotubes-a case study of counting nanofibers. NanoImpact 10:153-160. https://doi.org/10.1016/j.impact.2018.04.003
  2. Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature's boon for biomedical applications. Nanobiomedicine 6:1-16. https://doi.org/10.1177/1849543519863625
  3. Chiriaco F, Conversano F, Sbenaglia EA, ciaro S, Leporatti S, Lay-Ekuakille A (2014) Cytotoxicity measurements of Halloysite Nanotubes for nanomedicine applications. In: IEEE international symposium on medical measurements and applications (MeMeA), pp 1-4. https://doi.org/10.1109/MeMeA.2014.6860126
  4. Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167-183. https://doi.org/10.1016/j.ijpharm.2004.01.019
  5. Kommireddy D, Ichinose I, Lvov YM, Mills D (2005) Nanoparticle multilayer: surface modification for cell attachment and growth. J Biomed Nanotechnol 1:286-290. https://doi.org/10.1166/jbn.2005.046
  6. Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:608-614. https://doi.org/10.1186/1556-276X-6-608
  7. Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265-1271. https://doi.org/10.1002/mabi.201200121
  8. Hughes AD, Mattinson J, Powderly JD, Greene BT, King MR (2012) Rapid isolation of viable circulating tumor cells from patient blood samples. J Vis Exp 64:4248. https://doi.org/10.3791/4248
  9. Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25-29
  10. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282-295
  11. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112-113:75-93. https://doi.org/10.1016/j.clay.2015.05.001
  12. Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8-17. https://doi.org/10.1016/j.clay.2015.06.034
  13. Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489-1497. https://doi.org/10.1016/j.watres.2009.10.042
  14. Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G et al (2013) Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE e69020:20138. https://doi.org/10.1371/journal.pone.0069020
  15. Poulsen SS, Saber AT, Williams A et al (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16-32. https://doi.org/10.1016/j.taap.2014.12.011
  16. Jaurand MC (2017) An overview on the safety of tubular clay minerals. Dev Clay Sci 7:485-508. https://doi.org/10.1016/B978-0-08-100293-3.00020-0
  17. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Puck TT, Markus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653-666. https://doi.org/10.1084/jem.103.5.653
  19. Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49-60. https://doi.org/10.1016/j.toxlet.2007.08.009
  20. Franken N, Rodermond HM, Stap J, Haverman J, van Bree C (2006) Clonogenic assay of cells in virto. Nat Protoc 1:2315-2319. https://doi.org/10.1038/nprot.2006.339
  21. Kruszewski M, Gradzka I, Bartlomierczyk T, Chwastowska J, Sommer S et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219:151-159. https://doi.org/10.1016/j.toxlet.2013.03.006
  22. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408-6419. https://doi.org/10.1016/j.biomaterials.2012.05.047
  23. Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47-53. https://doi.org/10.1007/s11051-009-9774-z
  24. Gaaz TS, Sulong AB, Akhtar MN, Raza MR (2015) Morphology and tensile properties of thermoplastic polyurethane-halloysite nanotube nanocomposites. Int J Automot Mech Eng 12:2844-2856. https://doi.org/10.15282/ijame.12.2015.4.0239
  25. Lanone S, Rogerieux F, Geys J, Boczkowski J, Lacroix G, Dupont A, Maillot-Marechal E, Hoet P (2009) Comparative toxicity 27 manufactured nanomaterials in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. https://doi.org/10.1186/1743-8977-6-14
  26. Cho W-S, Duffin R, Bradley M et al (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55. https://doi.org/10.1186/1743-8977-10-55
  27. Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219-231. https://doi.org/10.1002/wnan.54
  28. Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed 6:1889-1901. https://doi.org/10.2147/IJN.S24005
  29. Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6:824-833. https://doi.org/10.1038/nnano.2011.188
  30. Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2,7-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2,7-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146-159. https://doi.org/10.1016/s0891-5849(99)00061-1
  31. Jakubowski W, Bartosz G (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757-760. https://doi.org/10.1006/cbir.2000.0556
  32. Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet 795:70-83. https://doi.org/10.1016/j.mrgentox.2015.11.002
  33. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1-11. https://doi.org/10.7508/ibj.2016.01.001
  34. Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech 4:876-883. https://doi.org/10.1038/nnano.2009.313
  35. Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 4:177-186. https://doi.org/10.1016/j.shaw.2013.07.006
  36. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of Halloysite clay nanotubes. Biomacromol 11:820-826. https://doi.org/10.1021/bm9014446
  37. Verma NK, Moore E, Blau W, Volkov Y, Babu PR (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1137. https://doi.org/10.1007/s11051-012-1137-5
  38. Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of Halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316-1329. https://doi.org/10.1002/jat.2858
  39. Ahmed FR, Shoaib MH, AzharM, Um SH, Yousuf RI, Hasmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B 135:50-55. https://doi.org/10.1016/j.colsurfb.2015.07.021
  40. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377-384. https://doi.org/10.1016/j.toxlet.2004.11.004
  41. Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425-1432. https://doi.org/10.1016/j.carbon.2007.03.033
  42. Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony forming efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197:29-37. https://doi.org/10.1016/j.toxlet.2010.04.018
  43. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 1:85-96. https://doi.org/10.1021/nn700256c
  44. Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H (2018) TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol 15:266-276. https://doi.org/10.1016/j.redox.2017.12.011
  45. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64-75. https://doi.org/10.1016/j.jfda.2014.01.005
  46. Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry-Moscow 71:962-974. https://doi.org/10.1134/s0006297906090033
  47. Garcia de la Cadena S, Massieu L (2016) Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 21:763-777. https://doi.org/10.1007/s10495-016-1247-0
  48. Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater 2:1-9. https://doi.org/10.1155/2015/685323
  49. Santimano MC, Martin A, Kowshik M, Sarkar A (2013) Zinc oxide nanoparticles cause morphological changes in human a549 cell line through alteration in the expression pattern of small GTPases at mRNA level. J Bionanosci 7:300-306. https://doi.org/10.1166/jbns.2013.1134
  50. Valentini X, Deneufbourg P, Paci P, Rugira P, Laurent S, Frau A, Stanicki D, Ris L, Nonclercq D (2018) Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicol Rep 5:878-889. https://doi.org/10.1016/j.toxrep.2018.08.006
  51. Sooklert K, Wongjarupong A, Cherdchom S, Wongjarupong N, Jindatip D, Phungnoi Y, Rojanathanes R, Sereemaspun A (2019) Molecular and morphological evidence of hepatotoxicity after silver nanoparticle exposure: a systematic review, in silico, and ultrastructure investigation. Toxicol Res 35:257-270. https://doi.org/10.5487/TR.2019.35.3.257
  52. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410-420. https://doi.org/10.1039/c0nr00478b
  53. Plascencia-Villa G, Starr CR, Armstrong LS, Ponce A, Jose-Yacaman M (2012) Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integr Biol (Camb) 4:1358-1366. https://doi.org/10.1039/c2ib20172k
  54. Srikanth K, Pereira E, Duarte AC, Rao JV (2016) Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 253:873-884. https://doi.org/10.1007/s00709-015-0849-7
  55. Martin A, Sarkar A (2019) Epithelial to mesenchymal transition, eIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO2. Sci Rep 9:436. https://doi.org/10.1038/s41598-018-36716-2
  56. Weeks SE, Metge BJ, Samant RS (2019) The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 76:4511-4524. https://doi.org/10.1007/s00018-019-03231-0