DOI QR코드

DOI QR Code

Advantages of omics technology for evaluating cadmium toxicity in zebrafish

  • Min, Eun Ki (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Lee, Ahn Na (College of Pharmacy, Kyungpook National University) ;
  • Lee, Ji-Young (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Shim, Ilseob (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Kim, Pilje (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Kim, Tae-Young (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Ki-Tae (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sangkyu (College of Pharmacy, Kyungpook National University)
  • 투고 : 2020.09.28
  • 심사 : 2020.12.17
  • 발행 : 2021.10.15

초록

In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.

키워드

과제정보

This study was partially supported by the National Institute of Environmental Research, Republic of Korea.

참고문헌

  1. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192-200. https://doi.org/10.1016/j.taap.2009.03.015
  2. Choi JY, Choi UK, Baek SH, Choi HB, Lee JH (2016) A study on chemical compositions of sediment and surface water in nakdong river for tracing contaminants from mining activities. J Korean Earth Sci Soc 37:211-217. https://doi.org/10.5467/JKESS.2016.37.4.211
  3. Kang D, Kim JE (2014) Fine ultrafine and yellow dust: emerging health problems in Korea. J Korean Med Sci 29:621-622 https://doi.org/10.3346/jkms.2014.29.5.621
  4. Cho MJ, Choi H, Kim HJ, Youn HJ (2016) Monitoring and risk assessment of heavy metals in perennial root vegetables. Korean J Environ Agric 35:55-61. https://doi.org/10.5338/kjea.2016.35.1.07
  5. Zhang X, Xia P, Wang P, Yang J, Baird DJ (2018) Omics advances in ecotoxicology. Environ Sci Technol 52:3842-3851. https://doi.org/10.1021/acs.est.7b06494
  6. Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Hecker M et al (2017) The role of omics in the application of adverse outcome pathways for chemical risk assessment. Toxicol Sci 158:252-262. https://doi.org/10.1093/toxsci/kfx097
  7. Canzler S, Schor J, Busch W, Schubert K, Rolle-Kampczyk UE et al (2020) Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol 94:371-388. https://doi.org/10.1007/s00204-020-02656-y
  8. Buesen R, Chorley BN, da Silva LB, Daston G, Deferme L et al (2017) Applying omics technologies in chemicals risk assessment: report of an ECETOC workshop. Regul Toxicol Pharmacol 91:S3-S13. https://doi.org/10.1016/j.yrtph.2017.09.002
  9. Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y et al (2006) Concept of Sample in OMICS Technology. J Integr Biol 10:127-137. https://doi.org/10.1089/omi.2006.10.127
  10. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498-503. https://doi.org/10.1038/nature12111
  11. Dubinska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzalek M, Niedbalska-Tarnowska J et al (2016) Zebrafish: a model for the study of toxicants affecting muscle development and function. Int J Mol Sci 17:1941. https://doi.org/10.3390/ijms17111941
  12. Monaco A, Grimaldi MC, Ferrandino I (2016) Neuroglial alterations in the zebrafish brain exposed to cadmium chloride. J Appl Toxicol 36:1629-1638. https://doi.org/10.1002/jat.3328
  13. Tu H, Fan C, Chen X, Liu J, Wang B et al (2017) Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish. Environ Toxicol Chem 36:2147-2154. https://doi.org/10.1002/etc.3748
  14. Chow ES, Hui MN, Lin CC, Cheng SH (2008) Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat Toxicol 87:157-169. https://doi.org/10.1016/j.aquatox.2008.01.019
  15. Senger MR, Rosemberg DB, Rico EP, de Bem AM, Dias RD et al (2006) In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol In Vitro 20:954-958. https://doi.org/10.1016/j.tiv.2005.12.002
  16. Chouchene L, Pellegrini E, Gueguen MM, Hinfray N, Brion F et al (2016) Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J Appl Toxicol 36:863-871. https://doi.org/10.1002/jat.3285
  17. Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63:253-267. https://doi.org/10.1016/j.ecoenv.2004.10.015
  18. Zhang T, Zhou XY, Ma XF, Liu JX (2015) Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos. Aquat Toxicol 167:68-76. https://doi.org/10.1016/j.aquatox.2015.07.021
  19. Hen Chow ES, Cheng SH (2003) Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis. Toxicol Sci 73:149-159. https://doi.org/10.1093/toxsci/kfg046
  20. Kim JY, Kim SJ, Bae MA, Kim JR, Cho KH (2018) Cadmium exposure exacerbates severe hyperlipidemia and fatty liver changes in zebrafish via impairment of high-density lipoproteins functionality. Toxicol In Vitro 47:249-258. https://doi.org/10.1016/j.tiv.2017.11.007
  21. Matz CJ, Krone PH (2007) Krone Cell death stress-responsive transgene activation and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ Sci Technol 41:5143-5148. https://doi.org/10.1021/es070452c
  22. Xiao B, Chen TM, Zhong Y (2016) Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish. Biochem Biophys Res Commun 481:201-205. https://doi.org/10.1016/j.bbrc.2016.081
  23. Pan YX, Luo Z, Zhuo MQ, Wei CC, Chen GH et al (2018) Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio. Aquat Toxicol 199:12-20. https://doi.org/10.1016/j.aquatox.2018.03.017b
  24. Zheng JL, Yuan SS, Wu CW, Li WY (2016) Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish. Aquat Toxicol 177:261-268. https://doi.org/10.1016/j.aquatox.2016.06.001c
  25. Zheng JL, Yuan SS, Wu CW, Lv ZM (2016) Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain ovary and liver of zebrafish (Danio rerio). Aquat Toxicol 180:36-44. https://doi.org/10.1016/j.aquatox.2016.09.012
  26. Zheng JL, Yuan SS, Wu CW, Lv ZM, Zhu AY (2017) Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish. Aquat Toxicol 182:113-119. https://doi.org/10.1016/j.aquatox.2016.11.017
  27. Wu SM, Tsai PJ, Chou MY, Wang WD (2013) Effects of maternal cadmium exposure on female reproductive functions gamete quality and offspring development in zebrafish (Danio rerio). Arch Environ Contam Toxicol 65:521-536. https://doi.org/10.1007/s00244-013-9909-1
  28. Avallone B, Agnisola C, Cerciello R, Panzuto R, Simoniello P et al (2015) Structural and functional changes in the zebrafish (Danio rerio) skeletal muscle after cadmium exposure. Cell Biol Toxicol 31:273-283. https://doi.org/10.1007/s10565-015-9310-0
  29. Avallone B, Crispino R, Cerciello R, Simoniello P, Panzuto R et al (2020) Cadmium effects on the retina of adult Danio rerio. C R Biol 338:40-47. https://doi.org/10.1016/j.crvi.2014.005
  30. Wang P, Wang Z, Xia P, Zhang X (2020) Concentration-dependent transcriptome of zebrafish embryo for environmental chemical assessment. Chemosphere 245:125632. https://doi.org/10.1016/j.chemosphere.2019.125632
  31. Yan SC, Chen ZF, Zhang H, Chen Y, Qi Z et al (2020) Evaluation and optimization of sample pretreatment for GC/MS-based metabolomics in embryonic zebrafish. Talanta 207:120260. https://doi.org/10.1016/j.talanta.2019.120260
  32. Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225-231. https://doi.org/10.1002/1097-0061(20000930)17:3%3c225::AID-YEA34%3e3.0.CO;2-5
  33. Alestrom P, Holter JL, Nourizadeh-Lillabadi R (2005) Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol 24:15-21. https://doi.org/10.1016/j.tibtech.2005.11.004
  34. Bretaud S, Allen C, Ingha PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J Neurochem 100:1626-1635. https://doi.org/10.1111/j.1471-4159.2006.04291.x
  35. Shepard JL, Amatruda JF, Stern HM, Subramanian A, Finkelstein D et al (2005) A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. PNAS 102:13194-13199. https://doi.org/10.1073/pnas.0506583102
  36. Williams TD, Mirbahai L, Chipman JK (2014) The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 13:157-171. https://doi.org/10.1093/bfgp/elt053
  37. Bogdanovic O, Fernandez-Minan A, Tena JJ, de la Calle-Mustienes E, Gomez-Skarmeta JL (2013) The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos. Methods 62:207-215. https://doi.org/10.1016/j.ymeth.2013.04.011
  38. Zheng M, Lu J, Zhao D (2018) Toxicity and transcriptome sequencing (RNA-seq) analyses of adult zebrafish in response to exposure carboxymethyl cellulose stabilized iron sulfide nanops. Sci Rep 8:8083. https://doi.org/10.1038/s41598-018-26499-x
  39. Magalhaes JP, Finch CE, Janssens G (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9:315-323. https://doi.org/10.1016/j.arr.2009.10.006
  40. White RJ, Collins JE, Sealy IM, Wali N, Dooley CM et al (2017) A high-resolution mRNA expression time course of embryonic development in zebrafish. eLIFE 6:e30860. https://doi.org/10.7554/eLife.30860.001
  41. Wan Y, Zhang Q, Zhang ZJ, Song BF, Wang XM et al (2016) Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia. BMC Med Genomics 9:13. https://doi.org/10.1186/s12920-016-0174-9
  42. Ordas A, Hegedus Z, Henkel CV, Stockhammer OW, Butler D et al (2011) Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish Shellfish Immunol 31:716-724. https://doi.org/10.1016/j.fsi.2008.022
  43. Hartig EI, Zhu S, King BL, Coffman JA (2016) Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol Open 5:1134-1141. https://doi.org/10.1242/bio.020065
  44. Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A et al (2008) Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS ONE 3:e1791. https://doi.org/10.1371/journal.pone.0001791
  45. Veneman WJ, Spaink HP, Brun NR, Bosker T, Vijver MG (2017) Pathway analysis of systemic transcriptome responses to injected polystyrene ps in zebrafish larvae. Aquat Toxicol 190:112-120. https://doi.org/10.1016/j.aquatox.2017.06.014
  46. Wang PP, Xia P, Yang JH, Wang ZH, Peng Y et al (2018) A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo. Test Environ Sci Technol 52:821-830 https://doi.org/10.1021/acs.est.7b04073
  47. Ji C, Yan L, Chen Y, Yue S, Dong Q et al (2019) Evaluation of the developmental toxicity of 2,7-dibromocarbazole to zebrafish based on transcriptomics assay. J Hazard Mater 368:514-522. https://doi.org/10.1016/j.jhazmat.2019.01.079
  48. Martineza RE, Codina AH, Nogareda LO, Villanueva E, Barata C et al (2018) Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A. Environ Pollut 243:988-997. https://doi.org/10.1016/j.envpol.2018.09.043
  49. Khoury G, Baliban R, Floudas C (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. https://doi.org/10.1038/srep00090
  50. Lippok B, Song S, Driever W (2014) Pou5f1 protein expression and posttranslational modification during early zebrafish development. Dev Dyn 243:468-477. https://doi.org/10.1002/dvdy.24079
  51. Wang M, Chan LL, Si M, Hong H, Wang D (2010) Proteomic analysis of hepatic tissue of zebrafish (Danio rerio) experimentally exposed to chronic microcystin-LR. Toxicol Sci 113:60-69. https://doi.org/10.1093/toxsci/kfp248
  52. Ellinger J, Gromes A, Poss M, Bruggemann M, Schmidt D et al (2016) Systematic expression analysis of the mitochondrial complex III subunits identifies UQCRC1 as biomarker in clear cell renal cell carcinoma. Oncotarget 7:86490-86499. https://doi.org/10.18632/oncotarget.13275
  53. Westman-Brinkmalm A, Abramsson A, Pannee J et al (2011) SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration. J Proteomics 75:425-434. https://doi.org/10.1016/j.jprot.2011.08.008
  54. Lu A, Hu X, Wang Y, Shen X, Li X et al (2014) (TRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. Fish Shellfish Immunol 36:229-239. https://doi.org/10.1016/j.fsi.2013.11.007
  55. Wu Y, Lou QY, Ge F, Xiong Q et al (2017) Quantitative proteomics analysis reveals novel targets of miR-21 in zebrafish embryos. Sci Rep 7:4022. https://doi.org/10.1038/s41598-017-04166-x
  56. Mann M (2008) Can proteomics retire the western blot? J Proteome Res 7:3065. https://doi.org/10.1021/pr800463v7(5):981-94
  57. Lucitt MB, Price TS, Pizarro A, Wu W, Yocum AK et al (2008) Analysis of the zebrafish proteome during embryonic development. Mol Cell Proteomics. https://doi.org/10.1074/mcp.M700382-MCP200
  58. Gao Y, Lee H, Kwon OK, Kim KT, Lee S et al (2019) Global proteomic analysis of lysine succinylation in Zebrafish (Danio rerio). J Proteome Res 18:3762-3769. https://doi.org/10.1021/acs.jproteome.9b00462
  59. Vieira LR, Hissa DC, de Souza TM, Sa CA, Evaristo JAM et al (2020) Proteomics analysis of zebrafish larvae exposed to 3, 4-dichloroaniline using the fish embryo acute toxicity test. Environ Toxicol 35:849-860. https://doi.org/10.1002/tox.22921
  60. Froyset AK, Khan EA, Fladmark KE (2016) Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 6:29631. https://doi.org/10.1038/srep29631
  61. Huang SS, Benskin JP, Chandramouli B, Butler H, Helbing CC et al (2016) Xenobiotics produce distinct metabolomic responses in zebrafish larvae (Danio rerio). Environ Sci Technol 50:6526-6535. https://doi.org/10.1021/acs.est.6b01128
  62. Xu N, Mu P, Yin Z, Jia Q, Yang S et al (2016) Analysis of the enantioselective effects of PCB95 in zebrafish (Danio rerio) embryos through targeted metabolomics by UPLC-MS/MS. PLoS ONE 11:e0160584. https://doi.org/10.1371/journal.pone.0160584
  63. Sotto RB, Medriano CD, Cho Y, Kim H, Chung IY et al (2017) Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC-MS environmental metabolomics. J Hazard Mater 339:63-72. https://doi.org/10.1016/j.jhazmat.2017.06.009
  64. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol Biosyst 8:470-481. https://doi.org/10.1039/c1mb05350g
  65. Ouyang Y, Tong H, Luo P, Kong H, Xu Z et al (2018) A high throughput metabolomics method and its application in female serum samples in a normal menstrual cycle based on liquid chromatography-mass spectrometry. Talanta 185:483-490. https://doi.org/10.1016/j.talanta.2018.03.087
  66. Mishra P, Gong Z, Kelly BC (2017) Assessing biological effects of fluoxetine in developing zebrafish embryos using gas chromatography-mass spectrometry based metabolomics. Chemosphere 188:157-167. https://doi.org/10.1016/j.chemosphere.2017.08.149
  67. Ortiz-Villanueva E, Navarro-Martin L, Jaumot J, Benavente F, Sanz-Nebot V (2017) Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach. Environ Pollut 231:22-36. https://doi.org/10.1016/j.envpol.2017.07.095
  68. Lin YC, Huang C, Huang HC, Liao MT, Lai YH (2019) Metabolomics profiling of haloperidol and validation of thromboxane-related signaling in the early development of zebrafish. Biochem Biophys Res Commun 513:608-615. https://doi.org/10.1016/j.bbrc.2019.04.003
  69. Gebreab KY, Eeza MNH, Bai T, Zuberi Z, Matysik J et al (2020) Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. Environ Pollut 265:114928. https://doi.org/10.1016/j.envpol.2020.114928
  70. Elie MR, Choi J, Nkrumah-Elie YM, Gonnerman GD, Stevens JF et al (2015) Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res 140:502-510. https://doi.org/10.1038/nprot.2017.040
  71. Ortiz-Villanueva E, Jaumot J, Martinez R, Navarro-Martin L, Pina B et al (2018) Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis. Sci Total Environ 635:156-166. https://doi.org/10.1016/j.scitotenv.2018.03.369
  72. Martinez R, Navarro-Martin L, Luccarelli C, Codina AE, Raldua D et al (2019) Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. Sci Total Environ 674:462-471. https://doi.org/10.1016/j.scitotenv.2019.04.200
  73. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83. https://doi.org/10.1186/s13059-017-1215-1
  74. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669-689. https://doi.org/10.1146/annurev.arplant.54.031902.135014
  75. Audouze K, Sarigiannis D, Alonso-Magdalena P, Brochot C, as M et al (2020) Integrative strategy of testing systems for identification of endocrine disruptors inducing metabolic disorders-an introduction to the OBERON project. Int J Mol Sci 21:2988. https://doi.org/10.3390/ijms21082988
  76. Kroeger M (2006) How omics technologies can contribute to the '3R' principles by introducing new strategies in animal testing. Trends Biotechnol 24:343-346. https://doi.org/10.1016/j.tibtech.2006.06.003
  77. Chen WY, John JA, Lin CH, Lin HF, Wu SC et al (2004) Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat Toxicol 69:215-227. https://doi.org/10.1016/j.aquatox.2004.05.004
  78. Feder ME, Hofmann GE (1999) Heat-shock proteins molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  79. Sonnack L, Klawonn T, Kriehuber R, Hollert H, Schafers C et al (2017) Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium cobalt and copper. Comp Biochem Physiol Part D Genomics Proteomics 24:29-40. https://doi.org/10.1016/j.cbd.2017.07.004
  80. Zhu JY, Chan KM (2012) Mechanism of cadmium-induced cytotoxicity on the ZFL zebrafish liver cell line. Metallomics 4:1064-1076. https://doi.org/10.1039/c2mt20134h
  81. Zheng JL, Guo SN, Yuan SS, Xia H, Zhu QL et al (2017) Preheating mitigates cadmium toxicity in zebrafish livers: evidence from promoter demethylation gene transcription to biochemical levels. Aquat Toxicol 190:104-111. https://doi.org/10.1016/j.aquatox.2017.06.022
  82. Huang X, Li Y, Wang T, Liu H, Shi J et al (2020) Evaluation of the oxidative stress status in zebrafish (Danio rerio) liver induced by three typical organic UV filters (BP-4 PABA and PBSA). Int J Environ Res Public Health 17:651. https://doi.org/10.3390/ijerph17020651
  83. Kawabata M, Umemoto N, Shimada Y, Nishimura Y, Zhang B et al (2015) Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci 143:374-384. https://doi.org/10.1093/toxsci/kfu235
  84. Ling XP, Lu YH, Huang HQ (2012) Differential protein profile in zebrafish (Danio rerio) brain under the joint exposure of methyl parathion and cadmium. Environ Sci Pollut Res Int 19:3925-3941. https://doi.org/10.1007/s11356-012-1037-3
  85. Kaneko SJ, Gerasimova T, Smith ST, Lloyd KO, Suzumori K et al (2003) CA125 and UQCRFS1 FISH studies of ovarian carcinoma. Gynecol Oncol 90:29-36. https://doi.org/10.1016/s0090-8258(03)00144-6
  86. Chan PK, Cheng SH (2003) Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch Toxicol 77:69-79. https://doi.org/10.1007/s00204-002-0411-1
  87. Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills liver skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225-235. https://doi.org/10.1007/s10534-005-5670-x
  88. Sonnack L, Klawonn T, Kriehuber R, Hollert H, Schafers C et al (2018) Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium cobalt and copper. Comp Biochem Physiol Part D Genomics Proteomics 25:99-108. https://doi.org/10.1016/j.cbd.2017.12.001