DOI QR코드

DOI QR Code

Novel SVPWM technique for three-level T-type Z-source inverters

  • Singh, Satwant (Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology) ;
  • Sonar, Santosh (Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology)
  • 투고 : 2020.04.22
  • 심사 : 2020.11.27
  • 발행 : 2021.02.20

초록

In this paper, a new SVPWM switching technique, named ZSVM_1TI, has been proposed for a three-level (3L) T-type Z-source inverter (ZSI). ZSVM_1TI is based on three main modifications of the existing PWM techniques for 3L inverters. First, the existing SVPWM of a 3L ZSI has been modified to double the frequency of the null interval. After that, an improved version of the maximum boost control (MBC) has been proposed based on modified SVPWM to eliminate the problem of the sixth frequency ripple components of inductor current with the existing MBC technique of ZSIs. Finally, a new switching pattern of a reduced common-mode voltage (CMV) PWM technique has been proposed to increase the switching frequency of the impedance network so that the size of the passive elements can be reduced. The proposed ZSVM_1TI has been compared with the existing PWM technique in terms of the size of the impedance network, the dc-link utilization, and the inductor current ripple profile. The above-mentioned findings have been successfully validated using theoretical analysis, simulations, and experimental results.

키워드

참고문헌

  1. Schweizer, M., Kolar, J.W.: Design and implementation of a highly efcient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899-907 (2013) https://doi.org/10.1109/TPEL.2012.2203151
  2. Husev, O., et al.: Comparison of impedance-source networks for two and multilevel buck-boost inverter applications. IEEE Trans. Power Electron. 31(11), 7564-7579 (2016) https://doi.org/10.1109/TPEL.2016.2569437
  3. Loh, P.C., Gao, F., Blaabjerg, F., Lim, S.W.: Operational analysis and modulation control of three-level Z-source inverters with enhanced output waveform quality. IEEE Trans. Power Electron. 24(7), 1767-1775 (2009) https://doi.org/10.1109/TPEL.2009.2014651
  4. Fernao Pires, V., Cordeiro, A., Foito, D., Martins, J.F.: Quasi-Z-source inverter with a T-type converter in normal and failure mode. IEEE Trans. Power Electron. 31(11), 7462-7470 (2016) https://doi.org/10.1109/TPEL.2016.2514979
  5. Aleenejad, M., Mahmoudi, H., Ahmadi, R.: A fault-tolerant strategy based on fundamental phase-shift compensation for three-phase multilevel converters with quasi-Z-source networks with discontinuous input current. IEEE Trans. Power Electron. 31(11), 7480-7488 (2016) https://doi.org/10.1109/TPEL.2016.2520884
  6. Roncero-Clemente, C., Romero-Cadaval, E., Ruiz-Cortes, M., Husev, O.: Carrier level-shifted based control method for the PWM 3L-T-Type qZS inverter with capacitor imbalance compensation. IEEE Trans. Industr. Electron. 65(10), 8297-8306 (2018) https://doi.org/10.1109/tie.2018.2814020
  7. Efah, F.B., Wheeler, P., Clare, J., Watson, A.: Space-vector-modulated three-level inverters with a single Z-source network. IEEE Trans. Power Electron. 28(6), 2806-2815 (2013) https://doi.org/10.1109/TPEL.2012.2219627
  8. Xing, X., Zhang, C., Chen, A., He, J., Wang, W., Du, C.: Space-vector-modulated method for boosting and neutral voltage balancing in z-source three-level T-type inverter. IEEE Trans. Industr. Appl. 52(2), 1621-1631 (2016) https://doi.org/10.1109/TIA.2015.2490142
  9. Ho, A., Chun, T.: Topology and modulation scheme for three-phase three-level modified z-source neutral-point-clamped inverter. IEEE Trans. Power Electron. 34(11), 11014-11025 (2019) https://doi.org/10.1109/tpel.2019.2901962
  10. Qin, C., Zhang, C., Chen, A., Xing, X., Zhang, G.: A space vector modulation scheme of the quasi-z-source three-level t-type inverter for common-mode voltage reduction. IEEE Trans. Industr. Electron. 65(10), 8340-8350 (2018) https://doi.org/10.1109/tie.2018.2798611
  11. Qin, C., Zhang, C., Xing, X., Li, X., Chen, A., Zhang, G.: Simultaneous common-mode voltage reduction and neutral-point voltage balance scheme for the quasi-Z-source three-level T-type inverter. IEEE Trans. Industr. Electron. 67(3), 1956-1967 (2020) https://doi.org/10.1109/tie.2019.2907501
  12. Yu, D., Cheng, Q., Gao, J., Tan, F., Zhang, Y.: Three-level neutral-point-clamped quasi-Z-source inverter with reduced Z-source capacitor voltage. Electron. Lett. 53(3), 185-187 (2017) https://doi.org/10.1049/el.2016.3930
  13. Ge, B., Liu, Y., Abu-Rub, H., Peng, F.Z.: State-of-charge balancing control for a battery-energy-stored quasi-Z-source cascaded-multilevel-inverter-based photovoltaic power system. IEEE Trans. Industr. Electron. 65(3), 2268-2279 (2018) https://doi.org/10.1109/tie.2017.2745406
  14. Sahoo, M., Keerthipati, S.: A three-level LC-switching-based voltage boost NPC inverter. IEEE Trans. Industr. Electron. 64(4), 2876-2883 (2017) https://doi.org/10.1109/TIE.2016.2636120
  15. Shults, T., Husev, O., Blaabjerg, F., Zakis, J., Khandakji, K.: LCCT-derived three-level three-phase inverters. IET Power Electron. 10(9), 996-1002 (2017) https://doi.org/10.1049/iet-pel.2016.0023
  16. Nguyen, M., Tran, T.: Quasi cascaded H-bridge five-level boost inverter. IEEE Trans. Industr. Electron. 64(11), 8525-8533 (2017) https://doi.org/10.1109/TIE.2017.2701770
  17. Do, D., Nguyen, M.: Three-level quasi-switched boost T-type inverter: analysis, PWM control, and verification. IEEE Trans. Industr. Electron. 65(10), 8320-8329 (2018) https://doi.org/10.1109/TIE.2018.2795564
  18. Do, D., Nguyen, M., Quach, T., Tran, V. Blaabjerg, F., Vilathgamuwa, M.: A PWM scheme for a fault-tolerant three-level quasiswitched boost T-type inverter. IEEE J. Emerg. Sel. Topics Power Electron.
  19. Barzegarkhoo, R., Moradzadeh, M., Zamiri, E., Madadi Kojabadi, H., Blaabjerg, F.: A new boost switched-capacitor multilevel converter with reduced circuit devices. IEEE Trans. Power Electron. 33(8), 6738-6754 (2018) https://doi.org/10.1109/tpel.2017.2751419
  20. Singh, S., Sonar, S.: Controlled diode bridge clamped three level Z source inverter and its PWM control. EPE J. 30(3), 107-121 (2020) https://doi.org/10.1080/09398368.2020.1725860
  21. Peng, F.Z., Shen, M., Qian, Z.: Maximum boost control of the Z-source inverter. IEEE Trans. Power Electron. 20(4), 833-838 (2005) https://doi.org/10.1109/TPEL.2005.850927
  22. VanderBroeck, H.W., Skudelny, H., Stanke, G.V.: Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans. Industr. Appl. 24(1), 142-150 (1988) https://doi.org/10.1109/28.87265
  23. Rajakaruna, S., Jayawickrama, L.: Steady-state analysis and designing impedance network of Z-source inverters. IEEE Trans. Industr. Electron. 57(7), 2483-2491 (2010) https://doi.org/10.1109/TIE.2010.2047990
  24. Shen, M., Wang, J., Joseph, A., Peng, F.Z., Tolbert, L.M., Adams, D.J.: Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42(3), 770-778 (2006) https://doi.org/10.1109/TIA.2006.872927
  25. Abdelhakim, A., Mattavelli, P., Spiazzi, G.: Three-phase split-source inverter (SSI): analysis and modulation. IEEE Trans. Power Electron. 31(11), 7451-7461 (2016) https://doi.org/10.1109/TPEL.2015.2513204