DOI QR코드

DOI QR Code

Cost-effective synchronization strategy for distributed generators in islanded microgrids

  • Pham, Minh-Duc (Department of Electrical Engineering, University of Ulsan) ;
  • Hoang, Van-Tuan (Department of Electrical Engineering, University of Ulsan) ;
  • Lee, Hong-Hee (Department of Electrical Engineering, University of Ulsan)
  • Received : 2020.09.21
  • Accepted : 2020.12.07
  • Published : 2021.03.20

Abstract

A microgrid (MG) is an effective way to integrate various distributed generators (DGs) into a power distribution system. The synchronization of DG voltage with MG voltage is indispensable to prevent inrush currents before connection to a MG system and for working in parallel with other DGs in the MG. In the past, synchronization in terms of both phase and magnitude was realized using additional voltage sensors to measure the MG voltage. However, this increased the system cost. In this paper, a cost-effective synchronization strategy is proposed to allow a DG to connect with an islanded MG system without any additional voltage sensors. The feasibility and effectiveness of the proposed strategy were validated by experiment with a scaled-down islanded microgrid.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation. (Grant number: R20XO02-33)

References

  1. Olivares, D.E., et al.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905-1919 (2014) https://doi.org/10.1109/tsg.2013.2295514
  2. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398-1409 (2006) https://doi.org/10.1109/TIE.2006.881997
  3. Mariam, L., Basu, M., Conlon, M.F.: Microgrid: architecture, policy and future trends. Renew. Sustain. Energy Rev. 64, 477-489 (2016) https://doi.org/10.1016/j.rser.2016.06.037
  4. Sun, H., et al.: Review of challenges and research opportunities for voltage control in smart grids. IEEE Trans. Power Syst. 34(4), 2790-2801 (2019) https://doi.org/10.1109/tpwrs.2019.2897948
  5. Nejabatkhah, F., Li, Y.W., Tian, H.: Power quality control of smart hybrid AC/DC microgrids: an overview. IEEE Access 7, 52295-52318 (2019) https://doi.org/10.1109/access.2019.2912376
  6. Pham, D.M., Lee, H.: Effective coordinated virtual impedance control for accurate power sharing in islanded microgrid. IEEE Trans. Ind. Electron. 68(3), 2279-2288 (2020). https://doi.org/10.1109/TIE.2020.2972441
  7. Mehrizi-Sani, A., Iravani, R.: Potential-function based control of a microgrid in islanded and grid-connected modes. IEEE Trans. Power Syst. 25(4), 1883-1891 (2010) https://doi.org/10.1109/TPWRS.2010.2045773
  8. Cintuglu, M.H., Youssef, T., Mohammed, O.A.: Development and application of a real-time testbed for multiagent system interoperability: a case study on hierarchical microgrid control. IEEE Trans. Smart Grid 9(3), 1759-1768 (2018) https://doi.org/10.1109/TSG.2016.2599265
  9. Han, Y., Li, H., Shen, P., Coelho, E.A.A., Guerrero, J.M.: Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 32(3), 2427-2451 (2017) https://doi.org/10.1109/TPEL.2016.2569597
  10. Zhang, X., Xia, D., Fu, Z., Wang, G., Xu, D.: An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters. IEEE Trans. Ind. Appl. 54(5), 5143-5151 (2018) https://doi.org/10.1109/tia.2018.2811718
  11. Yousefian, R., Bhattarai, R., Kamalasadan, S.: Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators. IEEE Trans. Power Syst. 32(6), 4818-4831 (2017) https://doi.org/10.1109/TPWRS.2017.2676138
  12. Yazdavar, A.H., Azzouz, M.A., El-Saadany, E.F.: A novel decentralized control scheme for enhanced nonlinear load sharing and power quality in islanded microgrids. IEEE Trans. Smart Grid 10(1), 29-39 (2019) https://doi.org/10.1109/TSG.2017.2731217
  13. Zhou, J., Cheng, P.-T.: A modified Q-V droop control for accurate reactive power sharing in distributed generation microgrid. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE (2017).https://doi.org/10.1109/ECCE.2017.8096713
  14. De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., Belmans, R.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107-1115 (2007) https://doi.org/10.1109/TPEL.2007.900456
  15. Zhu, Y., Zhuo, F., Wang, F., Liu, B., Zhao, Y.: A wireless load sharing strategy for islanded microgrid based on feeder current sensing. IEEE Trans. Power Electron. 30(12), 6706-6719 (2015) https://doi.org/10.1109/TPEL.2014.2386851
  16. Sun, Y., Hou, X., Yang, J., Han, H., Su, M., Guerrero, J.M.: New perspectives on droop control in AC microgrid. IEEE Trans. Ind. Electron. 64(7), 5741-5745 (2017) https://doi.org/10.1109/TIE.2017.2677328
  17. Trujillo Rodriguez, C., Velasco de la Fuente, D., Garcera, G., Figueres, E., Guacaneme Moreno, J.A.: Reconfigurable control scheme for a PV microinverter working in both grid-connected and island modes. IEEE Trans. Ind. Electron. 60(4), 1582-1595 (2013) https://doi.org/10.1109/TIE.2011.2177615
  18. Tran, T., Chun, T., Lee, H., Kim, H., Nho, E.: PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters. IEEE Trans. Power Electron. 29(10), 5218-5228 (2014) https://doi.org/10.1109/TPEL.2013.2290059
  19. Park, S., Kwon, M., Choi, S.: Reactive power P O anti-islanding method for a grid-connected inverter with critical load. IEEE Trans. Power Electron. 34(1), 204-212 (2019) https://doi.org/10.1109/TPEL.2018.2818441
  20. Zhang, W., Liu, H., Wang, W., Loh, P.C.: Seamless transfer scheme for parallel PV inverter system. IET Power Electron. 13(5), 1051-1058 (2020) https://doi.org/10.1049/iet-pel.2019.0735
  21. Hoang, T.V., Lee, H.: An adaptive virtual impedance control scheme to eliminate the reactive-power-sharing errors in an islanding meshed microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 966-976 (2018) https://doi.org/10.1109/jestpe.2017.2760631
  22. Hoang, T.V., Lee, H.: Virtual impedance control scheme to compensate for voltage harmonics with accurate harmonic power sharing in islanded microgrids. IEEE J. Emerg. Sel. Top. Power Electron. (2020). https://doi.org/10.1109/JESTPE.2020.2983447
  23. IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003 pp. 1-28 (2003)
  24. Shi, D., et al.: A distributed cooperative control framework for synchronized reconnection of a multi-bus microgrid. IEEE Trans. Smart Grid 9(6), 6646-6655 (2018) https://doi.org/10.1109/tsg.2017.2717806