DOI QR코드

DOI QR Code

Lifetime and reliability improvements in modular multilevel converters using controlled circulating current

  • Kadandani, Nasiru B. (School of Engineering, Newcastle University) ;
  • Dahidah, Mohamed (School of Engineering, Newcastle University) ;
  • Ethni, Salaheddine (School of Engineering, Newcastle University) ;
  • Muhammad, Musbahu (School of Computing, Engineering and Digital Technologies, Teesside University)
  • Received : 2021.04.16
  • Accepted : 2021.08.03
  • Published : 2021.10.20

Abstract

Circulating current has been an inherent feature of modular multilevel converters (MMC), which results in second-order harmonics on the arms currents. If not properly controlled, the circulating current can affect the lifetime and reliability of a converter by increasing the current loading, loss distribution, and junction temperature of its semiconductor devices. This paper proposes controlled circulating current injection as a means of improving the lifetime and reliability of an MMC. The proposed method involves modifying the reference modulating signals of the converter arms to include the controlled differential voltage as an offset. The junction temperature of the semiconductor devices obtained from an electro-thermal simulation is processed to deduce the lifetime and reliability of the converter. The obtained results are benchmarked against a case where the control method is not incorporated. The incorporation of the proposed control method results in a 68.25% increase in the expected lifetime of the converter and a 3.06% increase on its reliability index. Experimental results of a scaled down laboratory prototype validate the effectiveness of the proposed control approach.

Keywords

References

  1. Lesnicar, A., Marquardt, R.: A new modular voltage source inverter topology. In: Proc. of Eur. Conf. on Power Electron. Appl. Toulouse, France (2003)
  2. Han, X., Sima, W., Yang, M., Li, L., Yuan, T., Si, Y.: Transient characteristics under fround and short-circuit faults in a ±500kV MMC_based HVDC system with hybrid DC circuit breakrs. IEEE Trans. Power Del. 33(3), 1378-1887 (2018) https://doi.org/10.1109/tpwrd.2018.2795800
  3. Hao, Q., Li, Z., Gao, F., Zhang, J.: Reduced-order small-signal models of modular multilevel converter and MMC-based HVdc grid. IEEE Trans. Ind. Electron. 66(3), 2257-2268 (2019) https://doi.org/10.1109/tie.2018.2869358
  4. Zhu, R., Lin, N., Dinavashi, V., Liang, G.: An accurate and fast method for conducted EMI modeling and simulation of MMC-based HVdc converter station. IEEE Trans. Power Electron. 35(5), 4689-4702 (2020) https://doi.org/10.1109/tpel.2019.2945931
  5. Isik, S., Anurag, A., Bhattacharya, S.: Modeling of MMC based FACTS device as a replacement of UPFC for power flow and oscillation damping control. 46th Annual Conf. of IEEE Ind. Electrons. Society, pp. 4188-4193 (2020)
  6. Li, H. et al: Hardware design of a 1.7 kV SiC MOSFET based MMC for medium voltage motor drives. Appl. Power Electrons. Conf. Expo, pp. 1649-1655 (2018)
  7. Li, Y., et al.: PLL synchronization stability analysis of MMC-connected wind farms under high-impedance AC faults. IEEE Trans. Power Syst. 36(3), 2251-2261 (2021) https://doi.org/10.1109/TPWRS.2020.3025917
  8. Khanal, S., Disfani, V.: 'Modular multilevel converter design for grid integration of solar photovoltaic systems. IEEE power and energy society general meeting, pp. 1-5 (2020)
  9. Kadandani, N.B., Dahidah, M., Ethni, S.: Design and development of modular multilevel converter for solid state transformer application. Bayero J. Eng. Technol. 16(1), 31-41 (2021)
  10. Perez-Basante, A., et al.: Circulating current control for modular multilevel converters with (N+1) selective harmonic elimination-PWM. IEEE Trans. Power Electron. 35(8), 8712-8725 (2020) https://doi.org/10.1109/tpel.2020.2964522
  11. Chen, X., Liu, J., Song, S., Ouyang, S.: Circulating harmonic currents suppression of level-increased NLM based modular multilevel converter with deadbeat control. IEEE Trans. Power Electron. 35(11), 11418-11429 (2020) https://doi.org/10.1109/tpel.2020.2982781
  12. Tanta, M., et al.: Deadbeat predictive current control for circulating currents reduction in a modular multilevel converter based rail power conditioner. Appl. Sci. 10, 1-22 (2020)
  13. Zhang, H., Wickramasinghe, H.R., Jing, L., Li, J., Pou, J., Konstantinou, G.: Circulating current control scheme of modular multilevel converters supplying passive networks under unbalanced load conditions. Electr. Power Syst. Res. 171, 36-46 (2019) https://doi.org/10.1016/j.epsr.2019.01.041
  14. Bakhshizadeh, M.K., Ma, K., Loh, P.C., Blaabjerg, F.: Indirect thermal control for improved reliability of modular multilevel converter by utilizing circulating current. IEEE applied power electron. conf. and exp. Charlotte, NC, 2167-2173 (2015)
  15. Tu, Q., Xu, Z., Xu, L.: Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Trans. Power Del. 6(3), 2009-2017 (2011)
  16. Hagiwara, M., Akagi, H.: PWM control and experiment of modular multilevel converters. Power Electron. Spec. Conf, pp. 154-161 (2008)
  17. Goncalves, J., Rogers, D.J., Liang, J.: Submodule temperature regulation and balancing in modular multilevel converters. IEEE Trans. Ind. Electron. 65(9), 7085-7094 (2018) https://doi.org/10.1109/tie.2018.2795588
  18. Hahn, F., Andresen, M., Buticchi, G., Liserre, M.: Thermal analysis and balancing for modular multilevel converters in HVDC applications. IEEE Trans. Power Electron. 33(3), 1985-1996 (2018) https://doi.org/10.1109/TPEL.2017.2691012
  19. Andresen, M., Ma, K., Carne, G.D., Buticchi, G., Blaabjerg, F., Liserre, M.: Thermal stress analysis of medium-voltage converters for smart transformers. IEEE Trans. Power Electron. 32(6), 4753-4765 (2017) https://doi.org/10.1109/TPEL.2016.2600270
  20. Held, M., Jacob, P., Nicoletti, G., Scacco, P., Poech, M.: Fast power cycling test of IGBT modules in traction application. 2nd int. conf. on power electron. and drive syst, Singapore, 1, 425-430 (1997)
  21. Nielsen, R. O., Due, J., Munk-Nielsen, S.: Innovative measuring system for wear-out indication of high power IGBT modules. IEEE energy conv. cong. and expo, pp. 1785-1790 (2011)
  22. Huang, H., Mawby, P.A.: A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113-4119 (2013) https://doi.org/10.1109/TPEL.2012.2229472
  23. GopiReddy, L.R., Tolbert, L.M., Ozpineci, B., Pinto, J.O.P.: Rainflow algorithm-based lifetime estimation of power semiconductors in utility applications. IEEE Trans. Ind. Appl. 51(4), 3368-3375 (2015) https://doi.org/10.1109/TIA.2015.2407055
  24. Bannantine, J.A., Comer, J.J., Handrock, J.L.: Fundamentals of Metal Fatigue Analysis. Prentice-Hall, Englewood Cliffs (1990)
  25. Perpina, X., Jorda, X., Vellvehi, M., Rebollo, J., Mermet-Guyennet, M.: Long-term reliability of railway power inverters cooled by heat-pipe based systems. IEEE Trans. Ind. Electron. 58(7), 2662-2672 (2011) https://doi.org/10.1109/TIE.2010.2087298
  26. Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12, A159-A164 (1945) https://doi.org/10.1115/1.4009458
  27. Wang, H., et al.: Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 97-114 (2014) https://doi.org/10.1109/JESTPE.2013.2290282
  28. Hirschmann, D., Tissen, D., Schroder, S., Doncker, R.W.D.: Reliability prediction for inverters in hybrid electrical vehicles. IEEE Trans. Power Electron. 22(6), 2511-2517 (2007) https://doi.org/10.1109/TPEL.2007.909236
  29. Bryant, A.T., Mawby, P.A., Palmer, P.R., Santi, E., Hudgins, J.L.: Exploration of device reliability using compact device models and fast electrothermal simulation. IEEE Trans. Ind. Appl. 44(3), 894-903 (2008) https://doi.org/10.1109/TIA.2008.921388
  30. Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An Industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  31. Choi, U., Blaabjerg, F., Lee, K.: Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans. Power Electron. 30(5), 2517-2533 (2015) https://doi.org/10.1109/TPEL.2014.2373390
  32. Infineon: IGBT Module FF75R12RT4 Data Sheet (2013)
  33. Musallam, M., Johnson, C.M.: An efficient implementation of the rainflow counting algorithm for life consumption estimation. IEEE Trans. Reliab. 61(4), 978-986 (2012) https://doi.org/10.1109/TR.2012.2221040
  34. Jones, D.R.H., Ashby, M.F.: Engineering materials 1-an introduction to properties, applications and design, 3rd edn, Oxford (2015)
  35. Stephens, P.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal fatigue in engineering, 2nd edn. Wiley, Hoboken (2000)
  36. Nieslony, A.: Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech. Syst. Signal Process. 23, 712-2721 (2009) https://doi.org/10.1016/j.ymssp.2008.07.002
  37. Graditi G., Adinolfi, G.: Energy performances and reliability evaluation of an optimized DMPPT boost converter. Int. Conf. on Clean Electr. Power, Ischia, Italy, 69-72 (2011)
  38. Richardeau, F., Pham, T.T.L.: Reliability calculation of multilevel converters: theory and applications. IEEE Trans. Ind. Electron. 60(10), 4225-4233 (2013) https://doi.org/10.1109/TIE.2012.2211315
  39. Xu, X., Zhao, P., Zhao, C.: Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies. IEEE Trans. Power Electron. 31(4), 2720-2729 (2016) https://doi.org/10.1109/TPEL.2015.2444877
  40. Toshiba: IGBT GT20J341 Datashet (2012)

Cited by

  1. Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects vol.14, pp.18, 2021, https://doi.org/10.3390/en14185773