DOI QR코드

DOI QR Code

Phase-shifted full-bridge converter with coupled-inductor-based rectifier

  • Choi, Byoung-Gi (Department of Electrical Engineering, Myongji University) ;
  • Lee, Woo-Seok (Department of Electrical Engineering, Myongji University) ;
  • Park, Jeong-Uk (Department of Electrical Engineering, Myongji University) ;
  • Lee, Il-Oun (Department of Electrical Engineering, Myongji University)
  • Received : 2021.06.15
  • Accepted : 2021.07.26
  • Published : 2021.10.20

Abstract

In this paper, a phase-shifted full-bridge (PSFB) converter with a coupled-inductor-based rectifier is presented. The proposed PSFB converter alleviates the circulating-current problem of conventional PSFB converters. As a result, it can operate with a larger effective duty-cycle over a wide range of input voltage or output load conditions. The transformer turn-ratio can be better designed in terms of the primary-side conduction loss and the secondary-rectifier voltage stress. Due to the reduced secondary voltage stress, diodes with a lower forward-voltage drop can be used in the rectifier of the proposed converter, which results in s reduction of the secondary-side conduction and snubber losses. With these advantages, the proposed converter can achieve a higher power-conversion efficiency when compared to conventional converters. To verify the effectiveness of the proposed converter, this paper presents the operating principle, dc analysis, and experimental results of a prototype converter built with the specification of a 1.0 kW, 300-400 V input, a 50 V output, and a 100 kHz switching frequency.

Keywords

Acknowledgement

This paper is the result of a study conducted with the support of the Ministry of Trade, Industry and Energy and the Korea Institute of Trade, Industry and Technology Promotion's National Innovation Cluster Project (P0015364).

References

  1. Wang, L., Zhu, Q., Yu, W., Huang, A.Q.: Efficiency and conducted EMI evaluation of a single-phase power factor correction boost converter using stage-of-the-art SiC mosfet and SiC diode. IEEE Trans. Ind. Appl. 55(6), 7745-7756 (2019) https://doi.org/10.1109/tia.2019.2919266
  2. Liu, Z., Li, B., Lee, F.C., Li, Q.: High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger. IEEE Trans. Ind. Electron. 64(11), 9114-9123 (2017) https://doi.org/10.1109/TIE.2017.2716873
  3. Elrajoubi, A.M., Ang, S.S., George, K.: Design and analysis of a new GaN-based AC/DC converter for battery charging application. IEEE Trans. Ind. Appl. 55(4), 4044-4052 (2019) https://doi.org/10.1109/tia.2019.2915687
  4. Whitaker, B., Barkley, A., Cole, Z., Passmore, B., Martin, D., McNutt, T.R., Lostetter, A.B., Lee, J.S., Shiozaki, K.: A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices. IEEE Trans. Power Electron. 29(5), 2606-26177 (2014) https://doi.org/10.1109/TPEL.2013.2279950
  5. Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch buck-boost DC-DC converter with continuous input current. IEEE Trans. Power Electron. 33(12), 10317-10325 (2018) https://doi.org/10.1109/tpel.2018.2799876
  6. Shi, K., Zhang, D., Zhou, Z., Zhang, M., Zhang, D., Gu, Y.: A novel phase-shift dual full-bridge converter with full soft-switching range and wide conversion range. IEEE Trans. Power Electron. 31(11), 7747-7760 (2016) https://doi.org/10.1109/TPEL.2015.2512848
  7. Ravi, V., Kanamarlapudi, K., Wang, B., Kandasamy, N.K., So, P.L.: A new ZVS full-bridge DC-DC converter for battery charging with reduced losses over full-load range. IEEE Trans. Ind. Appl. 54(1), 571-579 (2018) https://doi.org/10.1109/tia.2017.2756031
  8. Koo, G.B., Moon, G.W., Youn, M.J.: New zero-voltage-switching phase-shift full-bridge converter with low conduction losses. IEEE Trans. Ind. Electron. 52(1), 228-235 (2005) https://doi.org/10.1109/TIE.2004.841063
  9. Chen, B.Y., Lai, Y.S.: Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components. IEEE Trans. Power Electron. 25(4), 1001-1012 (2010) https://doi.org/10.1109/TPEL.2009.2033069
  10. Lin, S.Y., Chen, C.L.: Analysis and design for RCD clamped snubber used in output rectifier of phase-shift full-bridge ZVS converters. IEEE Trans. Ind. Electron. 45(2), 358-359 (1998) https://doi.org/10.1109/41.681236
  11. Woo, J., Kim, D., Kim, C., Moon, G.: A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system. IEEE Trans. Power Electron. 29(4), 1562-1566 (2014) https://doi.org/10.1109/TPEL.2013.2279549
  12. Kasper, M., Bortis, D., Deboy, G., Kolar, J.W.: Design of a highly efficient (97.7%) and very compact (2.2 kW/dm 3) isolated AC-DC telecom power supply module based on the multicell ISOP converter approach. IEEE Trans. Power Electron 32(10), 7750-7769 (2017) https://doi.org/10.1109/TPEL.2016.2633334
  13. Kim, Y., Oh, C., Sung, W., Lee, B.: Topology and control scheme of OBC-LDC integrated power unit for electric vehicles. IEEE Trans. Power Electron. 32(3), 1731-1743 (2017) https://doi.org/10.1109/TPEL.2016.2555622
  14. Dudrik, J., Trip, N.D.: Soft-Switching PS-PWM DC-DC converter for full-load range applications. IEEE Trans. Ind. Electron. 57(8), 2807-2814 (2010) https://doi.org/10.1109/TIE.2009.2037100
  15. Mousavi, A., Das, P., Moschopouos, G.: A ZVS pulsewidth modulation full-bridge converter with a low-RMS-current resonant auxiliary circuit. IEEE Trans. Power Electron. 31(6), 4031-4047 (2016) https://doi.org/10.1109/TPEL.2015.2473822
  16. Lee, I.O., Moon, G.W.: Soft-switching DC/DC converter with a full ZVS range and reduced output filter for high-voltage applications. IEEE Trans. Power Electron. 28(1), 112-122 (2013) https://doi.org/10.1109/TPEL.2012.2199520
  17. Gu, B., Lai, J., Kees, N., Zheng, C.: Hybrid-switching full-bridge DC-DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers. IEEE Trans. Power Electron. 28(3), 1132-1144 (2013) https://doi.org/10.1109/TPEL.2012.2210565
  18. Chen, Z., Chen, Y., Chen, Q.: Isolated series-capacitor-based full-bridge converter with reduced circulating losses and wide soft switching range. IEEE J. Emerg. Sel. Top. Power Electron. 7(2), 1272-1285 (2019) https://doi.org/10.1109/jestpe.2018.2860621
  19. Wu, X., Xie, X., Zhang, J., Zhao, R., Qian, Z.: Soft switched full bridge DC-DC converter with reduced circulating loss and filter requirement. IEEE Trans. Power Electron. 22(5), 1949-1955 (2007) https://doi.org/10.1109/TPEL.2007.904211
  20. Lee, I., Moon, G.: Phase-shifted PWM converter with a wide zvs range and reduced circulating current. IEEE Trans. Power Electron. 28(2), 908-919 (2013) https://doi.org/10.1109/TPEL.2012.2205408
  21. Song, T.T., Huang, N.: A novel zero-voltage and zero-current-switching full-bridge PWM converter. IEEE Trans. Power Electron. 20(2), 286-291 (2005) https://doi.org/10.1109/TPEL.2004.843016
  22. Seok, K., Kwon, B.: An improved zero-voltage and zero-current-switching full-bridge PWM converter using a simple resonant circuit. IEEE Trans. Ind. Electron. 48(6), 1205-1209 (2001) https://doi.org/10.1109/41.969400
  23. Kim, E., Kim, Y.: A ZVZCS PWM FB DC/DC converter using a modified energy-recovery snubber. IEEE Trans. Ind. Electron. 49(5), 1120-1127 (2002) https://doi.org/10.1109/TIE.2002.803237
  24. Wu, X., Xie, X., Zhao, C., Qian, Z., Zhao, R.: Low voltage and current stress ZVZCS full bridge DC-DC converter using center tapped rectifier reset. IEEE Trans. Ind. Electron. 55(3), 1470-1477 (2008) https://doi.org/10.1109/TIE.2007.911921
  25. Cha, H., Chen, L., Ding, R., Tang, Q., Peng, F.Z.: An alternative energy recovery clamp circuit for full-bridge PWM converters with wide ranges of input voltage. IEEE Trans. Power Electron. 23(6), 2828-2837 (2008) https://doi.org/10.1109/TPEL.2008.2003131
  26. Ruan, X., Yan, Y.: A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg. IEEE Trans. Ind. Electron. 48(4), 777-785 (2001) https://doi.org/10.1109/41.937410
  27. Park, K., Kim, C., Moon, G., Youn, M.: Voltage oscillation reduction technique for phase-shift full-bride converter. IEEE Trans. Ind. Electron. 54(5), 2779-2790 (2007) https://doi.org/10.1109/TIE.2007.899872
  28. Lee, I.O., Moon, G.W.: Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers. IEEE Trans. Ind. Electron. 61(8), 3978-3988 (2014) https://doi.org/10.1109/TIE.2013.2282608
  29. Ayyanar, R., Mohan, N.: Novel soft-switched DC-DC converter with full ZVS-range and reduced filter requirement-part I: Regulated-output applications. IEEE Trans. Power Electron. 16(2), 184-192 (2001) https://doi.org/10.1109/63.911142
  30. Ayyanar, R., Mohan, N.: Novel soft-switched DC-DC converter with Full ZVS-range and reduced filter requirement-part II: constant-input, variable-output applications. IEEE Trans. Power Electron. 16(2), 193-200 (2001) https://doi.org/10.1109/63.911143
  31. Lee, I.: Hybrid PWM-resonant converter for electric vehicle on-board battery chargers. IEEE Trans. Power Electron. 31(5), 3639-3649 (2016) https://doi.org/10.1109/TPEL.2015.2456635
  32. Dao, L.A., Dao, N.D., Lee, D.C.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/tpel.2020.2968084
  33. Han, J., Moon, G.: High-efficiency phase-shifted full-bridge converter with a new coupled inductor rectifier (CIR). IEEE Trans. Power Electron. 34(9), 8468-8480 (2019) https://doi.org/10.1109/tpel.2018.2889101
  34. Jung, J.H.: Bifilar winding of a center-tapped transformer including integrated resonant inductance of LLC resonant converter. IEEE Trans. Power Electron. 28(2), 615-620 (2013) https://doi.org/10.1109/TPEL.2012.2213097