DOI QR코드

DOI QR Code

Adaptive virtual impedance control based on second-order generalized integral for circulating current suppression

  • Zhang, Baifu (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Han, Xiaoqing (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Meng, Runquan (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Ren, Chunguang (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Wang, Lei (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Song, Tianhao (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Liu, Yizhao (Electric Power Research Institute, State Grid Shanxi Electric Power Company)
  • 투고 : 2020.06.23
  • 심사 : 2020.10.13
  • 발행 : 2021.01.20

초록

The redundant design of multi-paralleled bidirectional power converters (BPCs) provides technical support for hybrid microgrid systems to consume more distributed generations (DGs) and DC loads. However, the multi-BPCs also provide paths for circulating current. In addition, the AC sub-grid may operate under unbalanced conditions due to the consumption of single-phase loads and power electronic devices. In addition, unbalanced three-phase voltage deteriorates the generation of circulating current. In this paper, an adaptive virtual impedance control method based on second-order generalized integration (SOGI) is proposed to suppress circulating current on the basic analysis of circulating current generation mechanism, the equivalent model establishment, and the suppression principle. The virtual impedance is dynamically adjusted in real-time based on the power oscillation caused by unbalanced voltage. Moreover, an integral term is added to the reactive power droop control to realize the tracking of voltage without static error. Finally, the effectiveness and feasibility of the proposed control algorithm are verified by experiments. The research results show that the proposed control method can optimize the damping characteristics, reduce the voltage difference between the BPCs, and improve the current sharing effect.

키워드

과제정보

The authors thank Jinhao Wang for insightful comments and suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (51807130) and the Major Science and Technology Projects in Shanxi Province (20181102028).

참고문헌

  1. Liu, X., Wang, P., Loh, P.C.: A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2(2), 278-286 (2011) https://doi.org/10.1109/TSG.2011.2116162
  2. Li, P., Xu, D., Zhou, Z., Lee, W.-J.: Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization. IEEE Trans. Smart Grid 7(1), 66-73 (2016) https://doi.org/10.1109/TSG.2015.2431072
  3. Wang, P., Jin, C., Zhu, D., Tang, Y., Loh, P.C., Choo, F.H.: Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid. IEEE Trans. Ind. Electron. 62(2), 1279-1290 (2015) https://doi.org/10.1109/TIE.2014.2347913
  4. Xu, Q., Xiao, J., Wang, P., Wen, C.: A Decentralized control strategy for economic operation of autonomous AC, DC, and hybrid AC/DC microgrids. IEEE Trans. Energy Convers. 32(4), 1345-1355 (2017) https://doi.org/10.1109/TEC.2017.2696979
  5. Wang, J., Yu, F., Jiang, W., Wang, W., Gao, Y.: Investigation of zero sequence circulating current suppression for parallel three-phase grid-connected converters without communication. IEEE Trans. Ind. Electron. 65(10), 7620-7629 (2018) https://doi.org/10.1109/tie.2018.2798613
  6. Li, P., Guo, T., Zhou, F., Yang, J., Liu, Y.: Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid. Int. J. Electr. Power Energy Syst. 122, 106208 (2020) https://doi.org/10.1016/j.ijepes.2020.106208
  7. Jiang, W., Ma, W., Wang, J., Wang, W., Wang, L.: Suppression of zero sequence circulating current for parallel three-phase grid-connected converters using hybrid modulation strategy. IEEE Trans. Ind. Electron. 65(4), 3017-3026 (2018) https://doi.org/10.1109/tie.2017.2750625
  8. Wang, J., Jin, C., Wang, P.: A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC Microgrids. IEEE Trans. Ind. Electron. 65(8), 6188-6197 (2018) https://doi.org/10.1109/tie.2017.2784349
  9. Awal, M.A., Yu, H., Tu, H., Lukic, S.M., Husain, I.: Hierarchical control for virtual oscillator based grid-connected and islanded microgrids. IEEE Trans. Power Electron. 35(1), 988-1001 (2019) https://doi.org/10.1109/tpel.2019.2912152
  10. Lu, X., Guerrero, J.M., Sun, K., Vasquez, J.C., Teodorescu, R., Huang, L.: Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 5(2), 683-692 (2014) https://doi.org/10.1109/TSG.2013.2272327
  11. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., Talebi, H.A.: A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources. IEEE Trans. Ind. Inform. Early Access (2019). https://doi.org/10.1109/TII.2017.2677943
  12. Peng, Z., et al.: Droop control strategy incorporating coupling compensation and virtual impedance for microgrid application. IEEE Trans. Energy Convers. 34(1), 277-291 (2019) https://doi.org/10.1109/tec.2019.2892621
  13. Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M.: Power Flow analysis for low-voltage AC and DC microgrids considering droop control and virtual impedance. IEEE Trans. Smart Grid 8(6), 2754-2764 (2017) https://doi.org/10.1109/TSG.2016.2537402
  14. Wu, X., Shen, C., Iravani, R.: Feasible range and optimal value of the virtual impedance for droop-based control of microgrids. IEEE Trans. Smart Grid 8(3), 1242-1251 (2017) https://doi.org/10.1109/TSG.2016.2519454
  15. Zhang, X., Fu, Z., Xiao, Y., Wang, G., Xu, D.: Control of parallel three-phase PWM converters under generalized unbalanced operating conditions. IEEE Trans. Power Electron. 32(4), 3206-3215 (2017) https://doi.org/10.1109/TPEL.2016.2577560
  16. Karimi, H., Karimi-Ghartemani, M., Sheshyekani, K.: Robust control of three-phase voltage source converters under unbalanced grid conditions. IEEE Trans. Power Electron. 34(11), 11278-11289 (2019) https://doi.org/10.1109/tpel.2019.2895839
  17. Allam, M.A., Hamad, A.A., Kazerani, M.: A sequence-component-based power-flow analysis for unbalanced droop-controlled hybrid AC/DC microgrids. IEEE Trans. Sustain. Energy 10(3), 1248-1261 (2019) https://doi.org/10.1109/tste.2018.2864938
  18. Pan, C., Liao, Y.: Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing. IEEE Trans. Ind. Electron. 55(7), 2776-2785 (2008) https://doi.org/10.1109/TIE.2008.925647
  19. Pan, C., Liao, Y.: Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers. IEEE Trans. Ind. Electron. 54(2), 825-838 (2007) https://doi.org/10.1109/TIE.2007.891776
  20. Xiao, H., Luo, A., Shuai, Z., Jin, G., Huang, Y.: An improved control method for multiple bidirectional power converters in hybrid AC/DC Microgrid. IEEE Trans. Smart Grid. 7(1), 340-347 (2016) https://doi.org/10.1109/TSG.2015.2469758
  21. Wei, B., Guerrero, J.M., Vasquez, J.C., Guo, X.: A circulating-current suppression method for parallel-connected voltage-source inverters with common DC and AC buses. IEEE Trans. Ind. Appl. 53(4), 3758-3769 (2017) https://doi.org/10.1109/TIA.2017.2681620
  22. Wu, Y., Guerrero, J.M., Wu, Y.: Distributed coordination control for suppressing circulating current in parallel inverters of islanded microgrid. IET Gener. Transm. Distrib. 13(7), 968-975 (2019) https://doi.org/10.1049/iet-gtd.2018.5454
  23. Qin, C., Zhang, C., Chen, A., Xing, X., Zhang, G.: Circulating current suppression for parallel three-level inverters under unbalanced operating conditions. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 480-492 (2019) https://doi.org/10.1109/jestpe.2018.2813390
  24. Nejabatkhah, F., Li, Y.W., Sun, K.: Parallel three-phase interfacing converters operation under unbalanced voltage in hybrid AC/DC microgrid. IEEE Trans. Smart Grid 9(2), 1031-1322 (2018)
  25. Sun, K., Wang, X., Li, Y.W., Nejabatkhah, F., Mei, Y., Lu, X.: Parallel operation of bidirectional interfacing converters in a hybrid AC/DC microgrid under unbalanced grid voltage conditions. IEEE Trans. Ind. Electron. 32(3), 1872-1884 (2017) https://doi.org/10.1109/TPEL.2016.2555140
  26. Liu, B., Liu, Z., Liu, J., An, R., Zheng, H., Shi, Y.: An adaptive virtual impedance control scheme based on small-AC-signal injection for unbalanced and harmonic power sharing in islanded microgrids. IEEE Trans. Power Electron. 34(12), 12333-12355 (2019) https://doi.org/10.1109/tpel.2019.2905588
  27. Mi, Y., Yan, L., Cai, H., Fu, Y., Tian, S., Jin, C.: Reactive power sharing control for islanded AC microgrid based on fuzzy adaptive compensation method. IET Gener. Transm. Distrib. 14(4), 585-593 (2020) https://doi.org/10.1049/iet-gtd.2019.0668
  28. Zhang, M., Song, B., Wang, J.: Circulating current control strategy based on equivalent feeder for parallel inverters in islanded microgrid. IEEE Trans. Power Syst. 31(1), 595-605 (2019) https://doi.org/10.1109/TPWRS.2018.2867588
  29. Yang, P., Xia, Y., Yu, M., Wei, W., Peng, Y.: A decentralized coordination control method for parallel bidirectional power converters in a hybrid AC-DC microgrid. IEEE Trans. Ind. Electron. 65(8), 6217-6228 (2018) https://doi.org/10.1109/tie.2017.2786200
  30. Chen, Z., Pei, X., Yang, M., Peng, L.: An adaptive virtual resistor (AVR) control strategy for low-voltage parallel inverters. IEEE Trans. Power Electron. 34(1), 863-876 (2019) https://doi.org/10.1109/TPEL.2018.2815284
  31. Gohil, G., Bede, L., Teodorescu, R., et al.: An integrated inductor for parallel interleaved VSCs and PWM schemes for fux minimization. IEEE Trans. Ind. Electron. 62(12), 7534-7546 (2015) https://doi.org/10.1109/TIE.2015.2455059
  32. Wai, R.-J., Zhang, Q.-Q., Wang, Y.: A novel voltage stabilization and power sharing control method based on virtual complex impedance for an of-grid microgrid. IEEE Trans. Power Electron. 34(2), 1863-1880 (2019) https://doi.org/10.1109/tpel.2018.2831673