DOI QR코드

DOI QR Code

Compensation control of rotor mass eccentric vibration for bearingless induction motors

  • Yang, Zebin (School of Electrical Information Engineering, Jiangsu University) ;
  • Mei, Haitao (School of Electrical Information Engineering, Jiangsu University) ;
  • Sun, Xiaodong (Automotive Engineering Research Institute, Jiangsu University) ;
  • Jia, Peijie (School of Electrical Information Engineering, Jiangsu University)
  • Received : 2020.09.25
  • Accepted : 2021.01.19
  • Published : 2021.05.20

Abstract

Aiming at the rotor mass eccentric vibration caused by the mechanical unbalance of a bearingless induction motor (BL-IM), an unbalance mass radius product (UMRP) strategy is proposed to compensate for rotor displacement. By analyzing the principle and influence of the unbalanced vibration of BL-IM's, a rotating coordinate system is established according to the rotor centroid, the size and orientation of the UMRP is sought by the search algorithm. Then the control signal for the unbalanced vibration compensation is calculated by the compensator, the centrifugal force caused by the mass unbalance is offset by the control signal, and the vibration amplitude of the rotor is weakened. Finally, the compensation effect is verified by the proposed strategy in the MATLAB/Simulink platform and an experimental prototype. Simulation and experimental results show that the rotor displacement peak-to-peak value about 10 ㎛. In addition, the radial displacement of the rotor is significantly reduced by the proposed compensation control strategy, and the anti-disturbance capability of the system is improved. The correctness and effectiveness of the proposed method are verified.

Keywords

Acknowledgement

This study was supported by National natural science foundation of China (51875261) and Jiangsu university dominant discipline construction project (PAPD).

References

  1. Asama, J., Hamasaki, Y., Oiwa, T.: Proposal and analysis of a novel single-drive bearingless motor. IEEE Trans. Ind. Electron. 60(1), 129-138 (2013) https://doi.org/10.1109/TIE.2012.2183840
  2. Sun, X., Jin, Z., Cai, Y., Yang, Z., Chen, L.: Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans. Power Electron. 35(12), 13631-13640 (2020) https://doi.org/10.1109/tpel.2020.2994254
  3. Severson, E., Gandikota, S., Mohan, N.: Practical implementation of dual-purpose no-voltage drives for bearingless motors. IEEE Trans. Ind. Appl. 52(2), 1509-1518 (2016) https://doi.org/10.1109/TIA.2015.2489609
  4. Chen, S., Lee, P., Toh, C.: Modeling and control of an unbalanced magnetic rotor-bearing system as a bearingless motor. Eng. Comput. 34(7), 2212-2227 (2017) https://doi.org/10.1108/EC-05-2017-0167
  5. Yang, Z., Ji, J., Sun, X., Zhu, Z., Zhao, Q.: Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2623-2633 (2020) https://doi.org/10.1109/jestpe.2019.2923793
  6. Cao, X., Zhou, J., Liu, C.: Advanced control method for a single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement. IEEE Trans. Energy Convers. 32(4), 1533-1543 (2017) https://doi.org/10.1109/TEC.2017.2719160
  7. Yu, J., Ma, Y., Yu, H.: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping. Inf. Sci. 376, 172-189 (2017) https://doi.org/10.1016/j.ins.2016.10.018
  8. Romero-Troncoso, R.: Multirate: signal processing to improve fft-based analysis for detecting faults in induction motors. IEEE Trans. Ind. Inf. 13(3), 1291-1300 (2016) https://doi.org/10.1109/TII.2016.2603968
  9. Wang, H., Li, F.: Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor. IEEE Trans. Ind. Electron. 67(6), 4326-4337 (2020) https://doi.org/10.1109/tie.2019.2931218
  10. Ye, X., Yang, Z., Zhang, T.: Modelling and performance analysis on a bearingless fixed-pole rotor induction motor. IET Electr. Power Appl. 13(2), 251-258 (2019) https://doi.org/10.1049/iet-epa.2018.5296
  11. Tousizadeh, M., Che, H., Selvaraj, J.: Fault-tolerant field-oriented control of three-phase induction motor based on unified feedforward method. IEEE Trans. Power Electron. 34(8), 7172-7183 (2019) https://doi.org/10.1109/tpel.2018.2884759
  12. Nian, H., He, Y.: Analytical modeling and feedback control of the magnetic levitation force for an induction-type bearingless motor. Proc. CSEE. 23(11), 139-144 (2003)
  13. Zad, H., Kha, T., Lazoglu, I.: Design and analysis of a novel bearingless motor for a miniature axial flow blood pump. IEEE Trans. Ind. Electron. 65(5), 4006-4016 (2018) https://doi.org/10.1109/tie.2017.2762626
  14. Ding, Q., Deng, Z., Wang, X.: Principle and design of a novel Lorenz force type bearingless motor with single-axis actively regulated capability. J. Electr. Eng. Technol. 11(5), 1253-1264 (2016) https://doi.org/10.5370/JEET.2016.11.5.1253
  15. Sun, X., Chen, L., Jiang, H.: High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers. IEEE Trans. Ind. Electron. 63(6), 3479-3488 (2016) https://doi.org/10.1109/TIE.2016.2530040
  16. Bu, W., Cheng, X., He, F.: Inverse system modeling and decoupling control of bearingless induction motor based on air gap flux orientation. Int. J. Appl. Electromagn. Mech. 53(3), 567-577 (2017) https://doi.org/10.3233/jae-160096
  17. Wang, H., Bao, J., Xue, B.: Control of suspending force in novel permanent-magnet-biased bearingless switched reluctance motor. IEEE Trans. Industr. Electron. 62(7), 4298-4306 (2015) https://doi.org/10.1109/TIE.2014.2387799
  18. Xu, X., Liu, J., Chen, S.: Synchronous force elimination in the magnetically suspended rotor system with an adaptation to parameter variations in the amplifier model. IEEE Trans. Industr. Electron. 65(12), 9834-9842 (2018) https://doi.org/10.1109/tie.2018.2807398
  19. Gruber, W., Rothboeck, M., Schoeb, R.: Design of a novel homopolar bearingless slice motor with reluctance rotor. IEEE Trans. Ind. Appl. 51(2), 1456-1464 (2015) https://doi.org/10.1109/TIA.2014.2341739
  20. Sreejeth, M., Singh, M., Kumar, P.: Efficiency enhancement for indirect vector-controlled induction motor drive. Int. J. Electron. 106(9), 1281-1294 (2019) https://doi.org/10.1080/00207217.2019.1584921
  21. Bu, W., He, F., Li, Z., Zhang, H., Shi, J.: Neural network inverse system decoupling control strategy of BLIM considering stator current dynamics. Trans. Inst. Meas. Control. 41(3), 621-630 (2019) https://doi.org/10.1177/0142331218762998
  22. Yang, Z., Wang, K., Sun, X., Ye, X.: Load disturbance rejection control of a bearingless induction motor based on fractional-order integral sliding mode. Proc. IMechE Part I J. Syst. Control Eng. 232(10), 1356-1364 (2018) https://doi.org/10.1177/0959651818782277
  23. Zhou, L., Trumper, D.L.: Reluctance force magnetic suspension characteristics and control for cylindrical rotor bearingless motors. J. Dyn. Syst. Meas.Control-Trans. Asme. 139(3), 031003 (2017) https://doi.org/10.1115/1.4035007
  24. Sun, X., Su, B., Wang, S.: Performance analysis of suspension force and torque in an IBPMSM with V-shape PMs for flywheel batteries. IEEE Trans. Magn. 54(11), 8105504 (2018)
  25. Ding, Q., Ni, T., Wang, X.: Optimal winding configuration of bearingless flux-switching permanent magnet motor with stacked structure. IEEE Trans. Energy Convers. 33(1), 78-86 (2018) https://doi.org/10.1109/tec.2017.2752746
  26. Zhang, Q., Deng, Z., Yang, Y.: Compensation control of rotor mass eccentric in bearingless switched reluctance motors. Proc. CSEE. 21(31), 128-134 (2011)
  27. Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Industr. Electron. 62(9), 5655-5664 (2015) https://doi.org/10.1109/TIE.2015.2405893
  28. Sun, X., Shen, Y., Wang, S.: Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for hevs using nonlinear lumped parameter equivalent circuit model. IEEE-ASME Trans. Mechatron. 23(2), 747-757 (2018) https://doi.org/10.1109/TMECH.2018.2803148
  29. Bu, W., He, F., Lu, C.: Unbalanced vibration control strategy of bearingless induction motor based on inverse system decoupling. Int. J. Appl. Electromagn. Mech 51(4), 455-469 (2016) https://doi.org/10.3233/jae-150120
  30. Bu, W., Tu, X., Lu, C., Pu, Y.: Adaptive feedforward vibration compensation control strategy of bearingless induction motor. Int. J. Appl. Electromagn. Mech. 63(2), 199-215 (2020) https://doi.org/10.3233/jae-190092
  31. Yang, Z., Chen, X., Sun, X., Bao, C., Lu, J.: Rotor radial disturbance control for a bearingless induction motor based on improved active disturbance rejection control. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 138-152 (2019) https://doi.org/10.1108/COMPEL-05-2018-0217
  32. Li, K., Cheng, G., Sun, X.: Performance optimization design and analysis of bearingless induction motor with different magnetic slot wedges. Results Phys. 12, 349-356 (2019) https://doi.org/10.1016/j.rinp.2018.11.078
  33. Tsunoda, W., Chiba, A., Shinshi, T.: Vibration control for a rotor supported by oil-film bearings using a bearingless motor. IEEE-ASME Trans. Mechatron. 24(3), 1368-1375 (2019) https://doi.org/10.1109/TMECH.2019.2908929
  34. Zhang, W., Cheng, L., Zhu, H.: Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing. IEEE Trans. Ind. Electron. 67(9), 7617-7628 (2020) https://doi.org/10.1109/tie.2019.2946568
  35. Ren, Y., Chen, X., Cai, Y.: Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes. IEEE Trans. Ind. Electron. 65(6), 4921-4932 (2018) https://doi.org/10.1109/tie.2017.2772161
  36. Yang, Z., Ding, Q., Sun, X., Zhao, Q., Luo, J.: Analysis and optimisation of a bearingless induction motor's suspension force and unbalanced magnetic pulling force mathematical model. IET Electr. Power Appl. 14(7), 1247-1255 (2020) https://doi.org/10.1049/iet-epa.2019.0817
  37. Minkyun, N., David, T.: Homopolar bearingless slice motor with flux-biasing halbach arrays. IEEE Trans. Ind. Electron. 67(9), 7757-7766 (2020) https://doi.org/10.1109/tie.2019.2942512

Cited by

  1. Rotor vibration unbalance compensation control of a bearingless induction motor vol.31, pp.8, 2021, https://doi.org/10.1002/2050-7038.12953
  2. Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method vol.166, 2022, https://doi.org/10.1016/j.ymssp.2021.108460