Acknowledgement
This study was supported by National natural science foundation of China (51875261) and Jiangsu university dominant discipline construction project (PAPD).
References
- Asama, J., Hamasaki, Y., Oiwa, T.: Proposal and analysis of a novel single-drive bearingless motor. IEEE Trans. Ind. Electron. 60(1), 129-138 (2013) https://doi.org/10.1109/TIE.2012.2183840
- Sun, X., Jin, Z., Cai, Y., Yang, Z., Chen, L.: Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans. Power Electron. 35(12), 13631-13640 (2020) https://doi.org/10.1109/tpel.2020.2994254
- Severson, E., Gandikota, S., Mohan, N.: Practical implementation of dual-purpose no-voltage drives for bearingless motors. IEEE Trans. Ind. Appl. 52(2), 1509-1518 (2016) https://doi.org/10.1109/TIA.2015.2489609
- Chen, S., Lee, P., Toh, C.: Modeling and control of an unbalanced magnetic rotor-bearing system as a bearingless motor. Eng. Comput. 34(7), 2212-2227 (2017) https://doi.org/10.1108/EC-05-2017-0167
- Yang, Z., Ji, J., Sun, X., Zhu, Z., Zhao, Q.: Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2623-2633 (2020) https://doi.org/10.1109/jestpe.2019.2923793
- Cao, X., Zhou, J., Liu, C.: Advanced control method for a single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement. IEEE Trans. Energy Convers. 32(4), 1533-1543 (2017) https://doi.org/10.1109/TEC.2017.2719160
- Yu, J., Ma, Y., Yu, H.: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping. Inf. Sci. 376, 172-189 (2017) https://doi.org/10.1016/j.ins.2016.10.018
- Romero-Troncoso, R.: Multirate: signal processing to improve fft-based analysis for detecting faults in induction motors. IEEE Trans. Ind. Inf. 13(3), 1291-1300 (2016) https://doi.org/10.1109/TII.2016.2603968
- Wang, H., Li, F.: Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor. IEEE Trans. Ind. Electron. 67(6), 4326-4337 (2020) https://doi.org/10.1109/tie.2019.2931218
- Ye, X., Yang, Z., Zhang, T.: Modelling and performance analysis on a bearingless fixed-pole rotor induction motor. IET Electr. Power Appl. 13(2), 251-258 (2019) https://doi.org/10.1049/iet-epa.2018.5296
- Tousizadeh, M., Che, H., Selvaraj, J.: Fault-tolerant field-oriented control of three-phase induction motor based on unified feedforward method. IEEE Trans. Power Electron. 34(8), 7172-7183 (2019) https://doi.org/10.1109/tpel.2018.2884759
- Nian, H., He, Y.: Analytical modeling and feedback control of the magnetic levitation force for an induction-type bearingless motor. Proc. CSEE. 23(11), 139-144 (2003)
- Zad, H., Kha, T., Lazoglu, I.: Design and analysis of a novel bearingless motor for a miniature axial flow blood pump. IEEE Trans. Ind. Electron. 65(5), 4006-4016 (2018) https://doi.org/10.1109/tie.2017.2762626
- Ding, Q., Deng, Z., Wang, X.: Principle and design of a novel Lorenz force type bearingless motor with single-axis actively regulated capability. J. Electr. Eng. Technol. 11(5), 1253-1264 (2016) https://doi.org/10.5370/JEET.2016.11.5.1253
- Sun, X., Chen, L., Jiang, H.: High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers. IEEE Trans. Ind. Electron. 63(6), 3479-3488 (2016) https://doi.org/10.1109/TIE.2016.2530040
- Bu, W., Cheng, X., He, F.: Inverse system modeling and decoupling control of bearingless induction motor based on air gap flux orientation. Int. J. Appl. Electromagn. Mech. 53(3), 567-577 (2017) https://doi.org/10.3233/jae-160096
- Wang, H., Bao, J., Xue, B.: Control of suspending force in novel permanent-magnet-biased bearingless switched reluctance motor. IEEE Trans. Industr. Electron. 62(7), 4298-4306 (2015) https://doi.org/10.1109/TIE.2014.2387799
- Xu, X., Liu, J., Chen, S.: Synchronous force elimination in the magnetically suspended rotor system with an adaptation to parameter variations in the amplifier model. IEEE Trans. Industr. Electron. 65(12), 9834-9842 (2018) https://doi.org/10.1109/tie.2018.2807398
- Gruber, W., Rothboeck, M., Schoeb, R.: Design of a novel homopolar bearingless slice motor with reluctance rotor. IEEE Trans. Ind. Appl. 51(2), 1456-1464 (2015) https://doi.org/10.1109/TIA.2014.2341739
- Sreejeth, M., Singh, M., Kumar, P.: Efficiency enhancement for indirect vector-controlled induction motor drive. Int. J. Electron. 106(9), 1281-1294 (2019) https://doi.org/10.1080/00207217.2019.1584921
- Bu, W., He, F., Li, Z., Zhang, H., Shi, J.: Neural network inverse system decoupling control strategy of BLIM considering stator current dynamics. Trans. Inst. Meas. Control. 41(3), 621-630 (2019) https://doi.org/10.1177/0142331218762998
- Yang, Z., Wang, K., Sun, X., Ye, X.: Load disturbance rejection control of a bearingless induction motor based on fractional-order integral sliding mode. Proc. IMechE Part I J. Syst. Control Eng. 232(10), 1356-1364 (2018) https://doi.org/10.1177/0959651818782277
- Zhou, L., Trumper, D.L.: Reluctance force magnetic suspension characteristics and control for cylindrical rotor bearingless motors. J. Dyn. Syst. Meas.Control-Trans. Asme. 139(3), 031003 (2017) https://doi.org/10.1115/1.4035007
- Sun, X., Su, B., Wang, S.: Performance analysis of suspension force and torque in an IBPMSM with V-shape PMs for flywheel batteries. IEEE Trans. Magn. 54(11), 8105504 (2018)
- Ding, Q., Ni, T., Wang, X.: Optimal winding configuration of bearingless flux-switching permanent magnet motor with stacked structure. IEEE Trans. Energy Convers. 33(1), 78-86 (2018) https://doi.org/10.1109/tec.2017.2752746
- Zhang, Q., Deng, Z., Yang, Y.: Compensation control of rotor mass eccentric in bearingless switched reluctance motors. Proc. CSEE. 21(31), 128-134 (2011)
- Jiang, K., Zhu, C., Chen, L.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Industr. Electron. 62(9), 5655-5664 (2015) https://doi.org/10.1109/TIE.2015.2405893
- Sun, X., Shen, Y., Wang, S.: Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for hevs using nonlinear lumped parameter equivalent circuit model. IEEE-ASME Trans. Mechatron. 23(2), 747-757 (2018) https://doi.org/10.1109/TMECH.2018.2803148
- Bu, W., He, F., Lu, C.: Unbalanced vibration control strategy of bearingless induction motor based on inverse system decoupling. Int. J. Appl. Electromagn. Mech 51(4), 455-469 (2016) https://doi.org/10.3233/jae-150120
- Bu, W., Tu, X., Lu, C., Pu, Y.: Adaptive feedforward vibration compensation control strategy of bearingless induction motor. Int. J. Appl. Electromagn. Mech. 63(2), 199-215 (2020) https://doi.org/10.3233/jae-190092
- Yang, Z., Chen, X., Sun, X., Bao, C., Lu, J.: Rotor radial disturbance control for a bearingless induction motor based on improved active disturbance rejection control. Int. J. Comput. Math. Electr. Electron. Eng. 38(1), 138-152 (2019) https://doi.org/10.1108/COMPEL-05-2018-0217
- Li, K., Cheng, G., Sun, X.: Performance optimization design and analysis of bearingless induction motor with different magnetic slot wedges. Results Phys. 12, 349-356 (2019) https://doi.org/10.1016/j.rinp.2018.11.078
- Tsunoda, W., Chiba, A., Shinshi, T.: Vibration control for a rotor supported by oil-film bearings using a bearingless motor. IEEE-ASME Trans. Mechatron. 24(3), 1368-1375 (2019) https://doi.org/10.1109/TMECH.2019.2908929
- Zhang, W., Cheng, L., Zhu, H.: Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing. IEEE Trans. Ind. Electron. 67(9), 7617-7628 (2020) https://doi.org/10.1109/tie.2019.2946568
- Ren, Y., Chen, X., Cai, Y.: Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes. IEEE Trans. Ind. Electron. 65(6), 4921-4932 (2018) https://doi.org/10.1109/tie.2017.2772161
- Yang, Z., Ding, Q., Sun, X., Zhao, Q., Luo, J.: Analysis and optimisation of a bearingless induction motor's suspension force and unbalanced magnetic pulling force mathematical model. IET Electr. Power Appl. 14(7), 1247-1255 (2020) https://doi.org/10.1049/iet-epa.2019.0817
- Minkyun, N., David, T.: Homopolar bearingless slice motor with flux-biasing halbach arrays. IEEE Trans. Ind. Electron. 67(9), 7757-7766 (2020) https://doi.org/10.1109/tie.2019.2942512
Cited by
- Rotor vibration unbalance compensation control of a bearingless induction motor vol.31, pp.8, 2021, https://doi.org/10.1002/2050-7038.12953
- Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method vol.166, 2022, https://doi.org/10.1016/j.ymssp.2021.108460