DOI QR코드

DOI QR Code

Short-circuit and open-circuit faults monitoring of IGBTs in solid-state-transformers using collector-emitter voltage

  • Cao, Qiuling (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Che, Yanbo (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Yang, Jianxiong (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Mi, Menglai (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Men, Yaoyao (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University)
  • Received : 2020.10.28
  • Accepted : 2021.02.22
  • Published : 2021.07.20

Abstract

The aging and malfunction of devices with great power have been the main causes of the collapse and failure of grid systems. Since they are frequently used in grid systems, the failure of a solid-state-transformer has a great impact on the energy-saving and normal operation of network systems. Moreover, the main switching element of a solid-state-transformer is a welding type IGBT, which is also the most fragile part. First, the uneven current flow phenomenon of paralleled IGBT modules is introduced. Then, the main factors influencing solid-state-transformer failure, along with the short-circuit and open-circuit faults of IGBTs are analyzed. After the derivation VCE, it can be seen that it is related to the short-circuit and open-circuit faults of IGBTs. After comparison and analysis, one type of solid-state-transformer should be chosen to be widely applied and with integral functions for models and simulations. The IGBTs in solid-state-transformers vary in terms of fault condition and position, which influences the internal and external electrical parameters of systems. Therefore, it is proposed that collector-emitter voltage can be used to characterize the fault conditions of solid-state-transformers. Through simulation verification and waveform observations, it can be seen that the collector-emitter voltage and VM, which is the voltage of the primary side of the transformer in a solid-state-transformer, can be used to characterize the failure condition of the internal converter of the solid-state-transformer.

Keywords

Acknowledgement

The authors would like to thank Financial support from the National Key Research and Development Program of China (2018YFB0905803).

References

  1. Lu, B., Sharma, S. K.: A Literature Review of IGBT Fault Diagnostic and Protection Methods for Power Inverters, In: IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1770-1777 (2009). https://doi.org/10.1109/TIA.2009.2027535
  2. Wang, K., Zhou, L., Sun, P., Du, X.: Monitoring bond wires fatigue of multichip igbt module using time duration of the gate charge. IEEE Trans. Power Electron. 36(1), 888-897 (2021) https://doi.org/10.1109/tpel.2020.3005183
  3. Hu, Z., Du, M., Wei, K.: Online calculation of the increase in thermal resistance caused by solder fatigue for IGBT modules. IEEE Trans. Device Mater. Reliab. 17(4), 785-794 (2017) https://doi.org/10.1109/tdmr.2017.2746571
  4. Han, J., Li, Y., Cao, Y., Ning, Z., Shen, Y., Xiong, J., Li, Y.: A new DC microgrid architecture based on MMC-SST and its control strategy [J]. Pow Syst Technol 2, 96-109 (2016). ((in Chinese))
  5. Mainali, K., et al.: A transformerless intelligent power substation: a three-phase SST enabled by a 15-kV SiC IGBT. IEEE Power Electron Magaz 2(3), 31-43 (2015) https://doi.org/10.1109/MPEL.2015.2449271
  6. Krishnamoorthy, H. S., Yerra, S.: Solid state auto-transformer concept for multi-pulse rectifiers, 2018 IEEE applied power electronics conference and exposition (APEC), San Antonio, TX, pp. 2362-2367 (2018)
  7. Qin, H., Kimball, J.W.: Solid-state transformer architecture using AC-AC dual-active-bridge converter. IEEE Trans. Industr. Electron. 60(9), 3720-3730 (2013) https://doi.org/10.1109/TIE.2012.2204710
  8. Yeh, C., Lai, J.: A study on high frequency transformer design in medium-voltage solid-state transformers, 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, pp. 1-5 (2018)
  9. Liu, T., et al.: Adaptive voltage control scheme for DAB based modular cascaded SST in PV application, 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, pp. 1478-1483 (2018)
  10. Kunov, G.: Matlab-Simulink model of solid-state transformer realized with matrix converters, 2014 18th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, pp. 1-4 (2014)
  11. Zhang, M., Song, B., Wang, J., Wei, L.: Control strategy for solid state transformer based on model predictive control[J]. Power Syst Technol 47(1), 131-137 (2019). ((in Chinese))
  12. Zeng, Z., Li, X., Zhang X., Cao L.: Comparative Evaluation of Kelvin Connection for Current Sharing of Multi-Chip Power Modules, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, pp. 4664-4670 (2018)
  13. Li, H. et al.: Improved thermal couple impedance model and thermal analysis of multi-chip paralleled IGBT module, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, pp. 3748-3753 (2015)
  14. Kexin, W., Mingxing, D., Linlin, X., Jian, L.: Study of bonding wire failure effects on external measurable signals of IGBT module. IEEE Trans. Device Mater. Reliab. 14(1), 83-89 (2014) https://doi.org/10.1109/TDMR.2012.2200485
  15. Martin, C., Schanen, J. , Guichon J., Pasterczyk, R.: Analysis of Electromagnetic Coupling and Current Distribution Inside a Power Module, In: IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 893-901 (2007). https://doi.org/10.1109/TIA.2007.900453
  16. Liu, J. et al.: Online junction temperature extraction and aging detection of IGBT via Miller plateau width, 2018 IEEE applied power electronics conference and exposition (APEC), San Antonio, TX, pp. 2813-2820 (2018)
  17. Singh, A., Anurag, A., Anand, S.: Evaluation of Vce at inflection point for monitoring bond wire degradation in discrete packaged IGBTs. IEEE Trans. Power Electron. 32(4), 2481-2484 (2017) https://doi.org/10.1109/TPEL.2016.2621757
  18. Chen, C., Pickert, V., Al-Greer, M., Jia, C., Ng, C.: Localization and detection of bond wire faults in multichip IGBT power modules. IEEE Trans. Power Electron. 35(8), 7804-7815 (2020) https://doi.org/10.1109/tpel.2020.2965019
  19. Eleffendi, M.A., Johnson, C.M.: In-service diagnostics for wire-bond lift-off and solder fatigue of power semiconductor packages. IEEE Trans. Power Electron. 32(9), 7187-7198 (2017) https://doi.org/10.1109/TPEL.2016.2628705
  20. Zhou, L., Zhou, S., Xu, M.: Investigation of gate voltage oscillations in an IGBT module after partial bond wires lift-off[J]. Microelectron Reliabil 53, 282-287 (2013) https://doi.org/10.1016/j.microrel.2012.08.024
  21. Luo, D., Lai, W., Chen, M., Xu, S., Xiao, Y. A fault detection method for IGBT bond wires partial lift off based on thermal resistance assessment, 2018 IEEE Region Ten Symposium (Tensymp), Sydney, Australia, pp. 135-139 (2018)
  22. Zhou, S., Zhou, L., Sun, P.: Monitoring potential defects in an IGBT module based on dynamic changes of the gate current. IEEE Trans. Power Electron. 28(3), 1479-1487 (2013) https://doi.org/10.1109/TPEL.2012.2210249
  23. Schmidt, R., Scheuermann, U.: Using the chip as a temperature sensor-the influence of steep lateral temperature gradients on the VCE(T)-measurement[J]. Epe Journal 21(2), 5-11 (2009) https://doi.org/10.1080/09398368.2011.11463790
  24. Huang, Y., Changzhi Lu, C., Xie, X., Fan, Y., Zhang J., Meng, X.: A study of test system for thermal resistance of IGBT, 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Shanghai, pp. 312-315 (2010)
  25. Wu, R., Blaabjerg, F., Wang, H., Liserre, M., Iannuzzo, F.: Catastrophic failure and fault-tolerant design of IGBT power electronic converters-an overview, IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, pp. 507-513 (2013)
  26. Yang, J., Che, Y., Ran, L., et al.: Evaluation of frequency and temperature dependence of power losses difference in parallel IGBTs[J]. IEEE Access 99, 1-1 (2020)
  27. Bin, J., Yanfeng, G., Yan, L.: Fault detection and location of IGBT short-circuit failure in modular multilevel converters[J]. Energies 11(6), 1492 (2018) https://doi.org/10.3390/en11061492
  28. Li, B., Shi, S., Wang, B., Wang, G., Wang, W., Xu, D.: Fault diagnosis and tolerant control of single IGBT open-circuit failure in modular multilevel converters. IEEE Trans. Power Electron. 31(4), 3165-3176 (2016) https://doi.org/10.1109/TPEL.2015.2454534
  29. Binbin, Li., Shaolei, S., Bo, W., et al.: Fault diagnosis and tolerant control of single IGBT open circuit failure in modular multilevel converters[J]. IEEE Trans. Power Electron. 31(4), 3165-3176 (2015) https://doi.org/10.1109/TPEL.2015.2454534
  30. Liu, J., Deng, Z., Song, S., Du, S., Wang, D.: A diagnosis strategy for multiple IGBT open-circuit faults of modular multilevel converters. IEEE Transact Power Electron 36(1), 191-203 (2021) https://doi.org/10.1109/tpel.2020.2997963
  31. Chen, M., Xu, D., Zhang, X., Zhu, N., Wu, J., Rajashekara, K.: An improved IGBT short-circuit protection method with self-adaptive blanking circuit based on V CE measurement. IEEE Trans Power Electron. 33(7), 6126-6136 (2018) https://doi.org/10.1109/tpel.2017.2747587
  32. Wu, R., Iannuzzo, F., Wang H., Blaabjerg, F.: Fast and accurate Icepak-PSpice co-simulation of IGBTs under short-circuit with an advanced PSpice model, 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, pp. 1-5 (2014)
  33. Kang, X., Santi, E., Hudgins, J. L., Palmer P. R., Donlon, J. F.: Parameter extraction for a physics-based circuit simulator IGBT model, Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03., Miami Beach, FL, USA, pp. 946-952 vol. 2. (2003)
  34. Chokhawala, R. S., Catt, J., Kiraly, L.: A discussion on IGBT short-circuit behavior and fault protection schemes, In IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 256-263, (1995). https://doi.org/10.1109/28.370271
  35. Mcmurray, W.: Power converter circuits having a high frequency link, (1970).
  36. Pesc, J.: Power Electronics Specialists Conference[J]. PESC'96 Record 27^. Annual IEEE 1(4), 17-17 (1996)
  37. Liu, L.: Research on power electronic transformer based on cascaded h-bridge multilevel converter [D]. Central South Univer. 54, 1404-1413 (2011). ((in Chinese))