Acknowledgement
The work was supported by National Natural Science Foundation of China (No. 61801407), Sichuan science and technology program (No. 20019YFG0427), China Scholarship Council (No. 201908515099) and Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province (No. 18kftk03), Natural Science Foundation of and Southwest University of Science and Technology (Nos. 17zx7110, 18zx7145).
References
- Kawahara, Y., et al.: Development of status detection method of lithium-ion rechargeable battery for hybrid electric vehicles. J. Power Sources 481, 228760 (2021) https://doi.org/10.1016/j.jpowsour.2020.228760
- Cai, L., et al.: Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature. IEEE Trans. Power Electron. 35(11), 11855-11864 (2020) https://doi.org/10.1109/tpel.2020.2987383
- Dai, H., et al.: A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain. IEEE Trans. Ind. Electron. 66(10), 7706-7716 (2019) https://doi.org/10.1109/tie.2018.2880703
- Wang, Y., Chen, Z.: A framework for state-of-charge and remaining discharge time prediction using unscented p filter. Appl. Energy 260, 114324 (2020) https://doi.org/10.1016/j.apenergy.2019.114324
- Wei, Z., et al.: Future smart battery and management: advanced sensing from external to embedded multi-dimensional measurement. J. Power Sources 489, 229462 (2021) https://doi.org/10.1016/j.jpowsour.2021.229462
- Wei, Z., et al.: Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization. IEEE Trans. Ind. Electron. 68(1), 312-323 (2021) https://doi.org/10.1109/tie.2019.2962429
- Feng, X., et al.: Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine. IEEE Trans. Veh. Technol. 68(9), 8583-8592 (2019) https://doi.org/10.1109/tvt.2019.2927120
- Tian, J., Xiong, R., Shen, W.: State-of-health estimation based on differential temperature for lithium ion batteries. IEEE Trans. Power Electron. 35(10), 10363-10373 (2020) https://doi.org/10.1109/tpel.2020.2978493
- Gou, B., Xu, Y., Feng, X.: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Trans. Veh. Technol. 69(10), 10854-10867 (2020) https://doi.org/10.1109/tvt.2020.3014932
- Li, P., et al.: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. J. Power Sources 459, 228069 (2020) https://doi.org/10.1016/j.jpowsour.2020.228069
- Hu, X., et al.: State estimation for advanced battery management: key challenges and future trends. Renew. Sustain. Energy Rev. 114, 109334 (2019) https://doi.org/10.1016/j.rser.2019.109334
- Feng, F., et al.: Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model. J. Power Sources 455, 227935 (2020) https://doi.org/10.1016/j.jpowsour.2020.227935
- Wang, Y., Li, M., Chen, Z.: Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: modeling, system identification, and validation. Appl. Energy 278, 115736 (2020) https://doi.org/10.1016/j.apenergy.2020.115736
- Bian, X., et al.: An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: model development and validation. J. Power Sources 448, 227401 (2020) https://doi.org/10.1016/j.jpowsour.2019.227401
- Li, S., He, H., Li, J.: Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology. Appl. Energy 242, 1259-1273 (2019) https://doi.org/10.1016/j.apenergy.2019.03.154
- Tang, X., et al.: Real-time aging trajectory prediction using a base model-oriented gradient-correction p filter for Lithium-ion batteries. J. Power Sources 440, 227118 (2019) https://doi.org/10.1016/j.jpowsour.2019.227118
- Tang, X., et al.: Model migration based battery power capability evaluation considering uncertainties of temperature and aging. J. Power Sources 440, 227141 (2019) https://doi.org/10.1016/j.jpowsour.2019.227141
- Wang, Y., et al.: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 131, 110015 (2020) https://doi.org/10.1016/j.rser.2020.110015
- Zhang, Y., et al.: State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O-2 cells: capacity loss modeling and remaining useful life prediction. Appl. Energy 255, 113818 (2019) https://doi.org/10.1016/j.apenergy.2019.113818
- Bian, X., Liu, L., Yan, J.: A model for state-of-health estimation of lithium ion batteries based on charging profiles. Energy 177, 57-65 (2019) https://doi.org/10.1016/j.energy.2019.04.070
- Xu, M., et al.: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model. J. Power Sources 438, 227015 (2019) https://doi.org/10.1016/j.jpowsour.2019.227015
- Pan, W., et al.: A data-driven fuzzy information granulation approach for battery state of health forecasting. J. Power Sources 475, 228716 (2020) https://doi.org/10.1016/j.jpowsour.2020.228716
- Wang, Y., et al.: A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory. J. Power Sources 449, 227543 (2020) https://doi.org/10.1016/j.jpowsour.2019.227543
- Zhang, S., et al.: A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis. J. Power Sources 479, 228740 (2020) https://doi.org/10.1016/j.jpowsour.2020.228740
- Tan, Y., Zhao, G.: Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. IEEE Trans. Ind. Electron. 67(10), 8723-8731 (2020) https://doi.org/10.1109/tie.2019.2946551
- Song, Y., et al.: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries. Appl. Energy 261, 114408 (2020) https://doi.org/10.1016/j.apenergy.2019.114408
- Naseri, F., et al.: Online parameter estimation for supercapacitor state-of-energy and state-of-health determination in vehicular applications. IEEE Trans. Ind. Electron. 67(9), 7963-7972 (2020) https://doi.org/10.1109/tie.2019.2941151
- Sarmah, S.B., et al.: Numerical and experimental investigation of state of health of Li-ion battery. Int. J. Green Energy 17(8), 510-520 (2020) https://doi.org/10.1080/15435075.2020.1763360
- Ma, Z., et al.: Multilayer SOH equalization scheme for MMC battery energy storage system. IEEE Trans. Power Electron. 35(12), 13514-13527 (2020) https://doi.org/10.1109/tpel.2020.2991879
- Hu, X., et al.: Battery lifetime prognostics. Joule 4(2), 310-346 (2020) https://doi.org/10.1016/j.joule.2019.11.018
- Hu, X., et al.: An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. Appl. Energy 257, 114019 (2020) https://doi.org/10.1016/j.apenergy.2019.114019
- Xiao, D., et al.: Reduced-coupling coestimation of SOC and SOH for lithium-ion batteries based on convex optimization. IEEE Trans. Power Electron. 35(11), 12332-12346 (2020) https://doi.org/10.1109/tpel.2020.2984248
- Liu, K., et al.: Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Convers. Manag. 195, 167-179 (2019) https://doi.org/10.1016/j.enconman.2019.04.065
- Li, W., et al.: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Appl. Energy 269, 115104 (2020) https://doi.org/10.1016/j.apenergy.2020.115104
- Li, J., Landers, R.G., Park, J.: A comprehensive single-p-degradation model for battery state-of-health prediction. J. Power Sources 456, 227950 (2020) https://doi.org/10.1016/j.jpowsour.2020.227950