• Title/Summary/Keyword: State of health estimation

Search Result 103, Processing Time 0.026 seconds

Battery State-of-Health Estimation Method based on Deep-learning and Feature Engineering (딥러닝과 특징 추출 기반 배터리 노화 상태 추정 방법)

  • Chang, Moon-Seok;Lee, Gang-Seok;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.332-338
    • /
    • 2022
  • This study proposes a battery state-of-health estimation method by applying a feature extraction technique. The technique that can improve estimation performance is the process of identifying and extracting meaningful data. To apply a data-driven-based aging state estimation method to batteries, health indicators are used as training data. However, limitations occur in extracting health indicators from charge/discharge cycles. This study proposes a deep-learning-based battery state-of-health estimation method that applies feature extraction techniques to compensate for this problem. According to the performance evaluation result of the proposed method, it has a low estimation error of 0.3887% based on an absolute error evaluation method.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.

The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계)

  • Kim, Il-Song;Lhee, Chin-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis (선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘)

  • Kang, Seung-Hyun;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

Online State-of-health(SOH) estimation for a LiMn2O4 cell based on fuzzy-logic

  • Kim, Jonghoon;Nikitenkov, Dmitry;Park, Jungpil
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.447-448
    • /
    • 2013
  • This paper investigates a new approach based on the fuzzy-logic controlled methodology that is suitable for analyzing and evaluating large format $LiMn_2O_4$ cell performance via online state-of-health (SOH) estimation for energy storage system (ESS) applications. First of all, the values of the cell resistance R and maximum cell capacity $Q_{max}$ are calculated from three factors such as voltage, current, and time that were measured by discharging/charging sequence. Then, using two values R and $Q_{max}$ previously calculated, present SOH of an arbitrary $LiMn_2O_4$ cell can be estimated using the defined fuzzy-logic inference system. The main advantage of this approach is wide parameters tuning possibility for good correspondence of SOH decay with other accurate estimation method and the possibility to perform suitable online SOH estimation.

  • PDF

EV Battery State Estimation using Real-time Driving Data from Various Routes (전기차 주행 데이터에 의한 경로별 배터리 상태 추정)

  • Yang, Seungmoo;Kim, Dong-Wan;Kim, Eel-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.139-146
    • /
    • 2019
  • As the number of electric vehicles (EVs) in Jejudo Island increases, the secondary use of EV batteries is becoming increasingly mandatory not only in reducing greenhouse gas emissions but also in promoting resource conservation. For the secondary use of EV batteries, their capacity and performance at the end of automotive service should be evaluated properly. In this study, the battery state information from the on-board diagnostics or OBD2 port was acquired in real time while driving three distinct routes in Jejudo Island, and then the battery operating characteristics were assessed with the driving routes. The route with higher altitude led to higher current output, i.e., higher C-rate, which would reportedly deteriorate state of health (SOH) faster. In addition, the SOH obtained from the battery management system (BMS) of a 2017 Kia Soul EV with a mileage of 55,000 km was 100.2%, which was unexpectedly high. This finding was confirmed by the SOH estimation based on the ratio of the current integral to the change in state of charge. The SOH larger than 100% can be attributed to the rated capacity that was lower than the nominal capacity in EV application. Therefore, considering the driving environment and understanding the SOH estimation process will be beneficial and necessary in evaluating the capacity and performance of retired batteries for post-vehicle applications.

A Survey on Measurement and Estimation Methods for State of Health of EV Lithium-ion Batteries (전기 자동차 리튬-이온 배터리 SOH 측정 및 추정 방법에 대한 조사연구)

  • Koog-Hwan Oh;Hyun-Chang Cho
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.462-469
    • /
    • 2023
  • Electric vehicles (EVs) have recently been in the spotlight and have been rapidly developed to reduce the carbon emission with respect to the transport sector. Most EVs currently employ lithium-ion batteries (LIBs) as power sources because they have a higher energy density and a lower self-discharge than other batteries. However, the LIBs cannot respond to high power demands when the state of health (SOH) falls below 80%. Therefore, the SOH of the LIBs must be accurately measured or estimated. To date, many methods have been studied and proposed for measuring or estimating the SOH. In this paper, representative methods among them are reclassified and introduced.

Discharging/Charging Voltage-Temperature Pattern Recognition for Improved SOC/Capacity Estimation and SOH Prediction at Various Temperatures

  • Kim, Jong-Hoon;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.

SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack (건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구)

  • Lee, Pyeong-Yeon;Kwon, Sanguk;Kang, Deokhun;Han, Seungyun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.