References
- FERC Order No. 819: Third-Party Provision of Primary Frequency Response Service. (2015)
- ENTSO-E, Network Code for Requirements for Grid Connection Applicable to all Generators, (2013)
- Al Riyami, H.A.S., et al.: Grid code compliance for integrating 50 MW wind farm into Dhofar power grid. In: Proceedings of the 12th GCC Cigre International Conference for Electrical Equipment, GCC Power, pp. 152-161, 8-10 November (2016)
- Liu, Y., Jiang, L., Smith, J.S., Wu, Q.H.: Primary frequency control of DFIG-WTs using bang-bang phase angle controller. IET Gen. Trans. Dis. 12(11), 2670-2678 (2018) https://doi.org/10.1049/iet-gtd.2017.0282
- Arani, M.F.M., El-Saadany, E.F.: Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans. Power Syst. 28(2), 1373-1384 (2013) https://doi.org/10.1109/TPWRS.2012.2207972
- Yang, J., Chen, Y., Hsu, Y.: Small-signal stability analysis and particle swarm optimization self-tuning frequency control for an islanding system with DFIG wind farm. IET Gen. Trans. Dis. 13(4), 563-574 (2019) https://doi.org/10.1049/iet-gtd.2018.6101
- Lee, W.-J., Xie, H., Yue, C., Wen, J., Miao, L.: Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support. IEEE Trans. Ind. Appl. 51(4), 2732-2742 (2015) https://doi.org/10.1109/TIA.2015.2394435
- Tohidi, S., Behnam, M.I.: A comprehensive review of LVRT of doubly fed induction wind generators. Ren. Sustain. Energy Rev. 57, 412-419 (2016) https://doi.org/10.1016/j.rser.2015.12.155
- Nian, H., Cheng, Ch., Song, Y.: Coordinated control of DFIG system based on repetitive control strategy under generalized harmonic grid voltages. J. Power Electron. 17(3), 733-743 (2017) https://doi.org/10.6113/JPE.2017.17.3.733
- Zhang, W., Ma, H., Zhang, J., Chen, L., Qu, Y.: Multi-objective Fuzzy-optimization of crowbar resistances for the low-voltage ride-through of doubly fed induction wind turbine generation system. J. Power Electron. 15(4), 119-1130 (2015)
- Haidar, A.M.A., Muttaqi, K.M., Hagh, M.T.: A coordinated control approach for dc link and rotor crowbars to improve FRT of DFIG-based wind turbine. IEEE Trans. Ind. Appl. 53(4), 4073-4086 (2017) https://doi.org/10.1109/TIA.2017.2686341
- Yang, L., Xu, Z., Ostergaard, J., Dong, Z.Y., Wong, K.P.: Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Trans. Power Syst. 27(2), 713-722 (2012) https://doi.org/10.1109/TPWRS.2011.2174387
- Wessels, C., Gebhardt, F., Fuchs, F.W.: Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults. IEEE Trans. Power Electron. 26(3), 807-815 (2011) https://doi.org/10.1109/TPEL.2010.2099133
- Du, K.-J., Xiao, X.-Y., Wang, Y., Zheng, Z.-X., Li, C.-S.: Enhancing fault ride-through capability of DFIG-based wind turbines using inductive SFCL with coordinated control. IEEE Trans. Appl. Superconduct. 29(2), 1-6 (2019)
- Shiddiq Yunus, A.M., Abu-Siada, A., Masoum, M.A.S.: Application of SMES unit to improve DFIG power dispatch and dynamic performance during intermittent misfre and fre-through faults. IEEE Trans. Appl. Superconduct. 23(4), 5-8 (2013)
- Saadat, N., Choi, S.S., Vilathgamuwa, D.M.: A statistical evaluation of the capability of distributed renewable generator-energy-storage system in providing load low-voltage ride-through. IEEE Trans. Power Delivery 30(3), 1128-1136 (2015) https://doi.org/10.1109/TPWRD.2014.2360340
- Chen, L., et al.: Combined use of a resistive SFCL and DC-link regulation of a SMES for FRT enhancement of a DFIG wind turbine under different faults. IEEE Trans. Appl. Superconduct. 29(2), 1-8 (2019)
- Xiao, X.Y., Yang, R.H., Chen, X.-Y., Zheng, Z.X.: Integrated DFIG protection with a modified SMES FCL under symmetrical and asymmetrical faults. IEEE Trans. Appl. Superconduct. 28(4), 1-6 (2018)
- Marhaba, M.S., Farhangi, S., Iman-Eini, H., Iravani, R.: Reactive power sharing improvement of droop-controlled DFIG wind turbines in a microgrid. IET Gen. Trans. Dis. 12(4), 842-849 (2017)
- Al Riyami, H.A.S., et al.: Grid impact study of the frst wind farm project in Dhofar transmission system. In: The 4th International Conference on Renewable Energy: Generation and Applications (ICREGA16), Belfort, France, February 8-10, 2016
- Desingu, K., Selvaraj, R., Chelliah, T.R., Khare, D., Joshi L.P.: Thermal loading of multi-megawatt medium-voltage power converters serving to variable speed large pumped storage units. In: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6, Chennai, India, (2018)
- Hitachi Power Semiconductor Device: High voltage IGBT module. App.Manual, IGBT-HI-00002 (2009)
- Mohsenzade, S., Zarghani, M., Kaboli, S.: A high voltage series stacked IGBT switch with active energy recovery feature for pulsed power application. IEEE Trans. Ind. Electron. 67, 3650-3661 (2019) https://doi.org/10.1109/tie.2019.2921297
- Zhou, Y., Zhao, L., Matsuo, I.B.M., Lee, W.: A dynamic weighted aggregation equivalent modeling approach for the DFIG wind farm considering the Weibull distribution for fault analysis. IEEE Trans. Ind. Appl. 55(6), 5514-5523 (2019) https://doi.org/10.1109/tia.2019.2929486
- Madhusoodhanan, S., et al.: Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 51(4), 43-60 (2015)
- Li, H., et al.: Thermal coupling analysis for a multi-chip paralleled IGBT module in a doubly fed wind turbine power converter. IEEE Trans. Energy Convers. 8969, 1-11 (2016)
- Lee, J., Muljadi, E., Srensen, P., Kang, Y.C.: Releasable kinetic energy-based inertial control of a DFIG wind power plant. IEEE Trans. Sustain. Energy 7(1), 279-288 (2016) https://doi.org/10.1109/TSTE.2015.2493165
Cited by
- Optimal Sizing of Energy Storage System for Operation of Wind Farms Considering Grid-Code Constraints vol.14, pp.17, 2021, https://doi.org/10.3390/en14175478