DOI QR코드

DOI QR Code

SWNT Coated PET Fabric Heaters with Stable Electrothermal Response from CMC/SWNT Conductive Network

카본나노튜브/폴리에스터 유연 발열 직물의 제조와 나노 규모의 전도성 망이 발열 특성에 미치는 영향 연구

  • Kang, Dong Jun (Department of Organic and Nano Engineering, Hanyang University) ;
  • Shin, Hwansoo (Department of Organic and Nano Engineering, Hanyang University) ;
  • Lee, Hak Bong (Department of Organic and Nano Engineering, Hanyang University) ;
  • Jeong, Woojae (Department of Organic and Nano Engineering, Hanyang University) ;
  • Lee, Hyeonhoo (Department of Organic and Nano Engineering, Hanyang University) ;
  • Han, Tae Hee (Department of Organic and Nano Engineering, Hanyang University)
  • 강동준 (한양대학교 유기나노공학과) ;
  • 신환수 (한양대학교 유기나노공학과) ;
  • 이학봉 (한양대학교 유기나노공학과) ;
  • 정우재 (한양대학교 유기나노공학과) ;
  • 이현후 (한양대학교 유기나노공학과) ;
  • 한태희 (한양대학교 유기나노공학과)
  • Received : 2021.09.09
  • Accepted : 2021.10.24
  • Published : 2021.10.31

Abstract

Single-walled carbon nanotubes (SWNTs) are effectively dispersed in a water medium using carboxymethyl cellulose (CMC) as a dispersant and coated onto polyethylene terephthalate (PET) fabric via a dip-coating process. According to the weight percent of the CMC to carbon nanotubes (CNTs), the coating evenness on the PET fabric surface, dispersibility, and the washing fastness of the SWNT dispersant were changed and evaluated using ultraviolet-visible (UV-Vis) spectrometry. At the optimized ratio between the CMC and SWNT, the coated PET fabric exhibited higher electrical conductivity with a more uniform resistance deviation value and a stable heating aspect in the infrared (IR) image, compared with the bare SWNT-coated fabric. A specific observation of the coated fabric surface revealed that the CMC/SWNT network formed on the fabric surface connects each fibril by adding a parallel conductive pathway for the applied electrical flow. In addition, this additive pathway can release the heat concentration, which grants the fabric heater heat stability. The proposed fabric heater shows stable performance during the bending test. After 1 hour of performing the ON/OFF test, 11.9 ℃/s of the heating rate shows no changes in the surface temperature. This study demonstrates a highly stable fabric heater for heating sheets and wearable heating garments.

Keywords

Acknowledgement

제작된 샘플은 한양 LICK+ 분석장비센터에서 자외선-가시광선 분광광도계로 분석되었다. 본 연구는 한국에너지기술평가원(과제번호: 2018201010636A, 20204010600090)의 연구비 지원 하에 연구되었다. 당 기관들의 분석과 연구비 지원에 감사합니다.

References

  1. K. L. Grosse, M. H. Bae, F. Lian, E. Pop, and W. P. King, "Nanoscale Joule Heating, Peltier Cooling and Current Crowding at Graphene-metal Contacts", Nat. Nanotechnol., 2011, 6, 287-290. https://doi.org/10.1038/nnano.2011.39
  2. T. B. Song, Y. Chen, C. H. Chung, Y. M. Yang, B. Bob, H. S. Duan, G. Li, K. N. Tu, Y. Huang, and Y. Yang, "Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts", ACS Nano, 2014, 8, 2804-2811. https://doi.org/10.1021/nn4065567
  3. X. Yao, S. C. Hawkins, and B. G. Falzon , "An Advanced Anti-icing/de-icing System Utilizing Highly Aligned Carbon Nanotube Webs", Carbon, 2018, 136, 130-138. https://doi.org/10.1016/j.carbon.2018.04.039
  4. J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, E. S. Kim, S. J. Chae, T. Q. Huy, N. Van Luan, and Y. H. Lee, "Heat Dissipation of Transparent Graphene Defoggers", Adv. Funct. Mater., 2012, 22, 4819-4826. https://doi.org/10.1002/adfm.201201155
  5. B. W. An, E. J. Gwak, K. Kim, Y. C. Kim, J. Jang, J. Y. Kim, and J. U. Park, "Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability", Nano Lett., 2016, 16, 471-478. https://doi.org/10.1021/acs.nanolett.5b04134
  6. P. Liu, Y. Li, Y. Xu, L. Bao, L. Wang, J. Pan, Z. Zhang, X. Sun, and H. Peng, "Stretchable and Energy-Efficient Heating Carbon Nanotube Fiber by Designing a Hierarchically Helical Structure", Small, 2018, 14, 1702926. https://doi.org/10.1002/smll.201702926
  7. M. Zhao, D. Li, J. Huang, D. Wang, A. Mensah, and Q. Wei, "A Multifunctional and Highly Stretchable Electronic Device Based on Silver Nanowire/Wrap Yarn Composite for a Wearable Strain Sensor and Heater", J. Mater. Chem. C, 2019, 7, 13468-13476. https://doi.org/10.1039/c9tc04252k
  8. A. Muhulet, F. Miculescu, S. I. Voicu, F. Schutt, V. K. Thakur, and Y. K. Mishra, "Fundamentals and Scopes of Doped Carbon Nanotubes Towards Energy and Biosensing Applications", Mater. Today Energy, 2018, 9, 154-186. https://doi.org/10.1016/j.mtener.2018.05.002
  9. Y. Jiang, Y. Wang, Y. K. Mishra, R. Adelung, and Y. Yang, "Stretchable SWNTs-ecoflex Composite as Variable-transmittance Skin for Ultrasensitive Strain Sensing", Adv. Mater. Technol., 2018, 3, 1800248. https://doi.org/10.1002/admt.201800248
  10. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, "Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials", Small, 2011, 7, 3186-3192. https://doi.org/10.1002/smll.201101305
  11. P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, and S. Fan, "Fast High-temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display", Adv. Mater., 2009, 21, 3563-3566. https://doi.org/10.1002/adma.200900473
  12. H.-S. Jang, S. K. Jeon, and S. H. Nahm, "The Manufacture of a Transparent Film Heater by Spinning Multi-walled Carbon Nanotubes", Carbon, 2011, 49, 111-116. https://doi.org/10.1016/j.carbon.2010.08.049
  13. M. A. Aouraghe, F. Xu, X. Liu, and Y. Qiu, "Flexible, Quickly Responsive and Highly Efficient E-heating Carbon Nanotube Film", Compos. Sci. Technol., 2019, 183,107824. https://doi.org/10.1016/j.compscitech.2019.107824
  14. H. Kim and S. Lee, "Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents", Polymers, 2019, 11, 928. https://doi.org/10.3390/polym11050928
  15. P. Liu, L. Liu, K. Jiang, and S. Fan, "Carbon-Nanotube-Film Microheater on a Polyethylene Terephthalate Substrate and Its Application in Thermochromic Displays", Small, 2011, 7, 732-736. https://doi.org/10.1002/smll.201001662
  16. W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396. https://doi.org/10.1038/s41467-020-20518-0
  17. F. Loghin, A. Rivadeneyra, M. Becherer, P. Lugli, and M. Bobinger, "A Facile and Efficient Protocol for Preparing Residual-Free Single-Walled Carbon Nanotube Films for Stable Sensing Applications", Nanomaterials, 2019, 9, 471. https://doi.org/10.3390/nano9030471
  18. P. Ilanchezhiyan, A. S. Zakirov, G. Mohan Kumar, Sh. U. Yuldashev, H. D. Cho, T. W. Kang, and A. T. Mamadalimov, "Highly Efficient CNT Functionalized Cotton Fabrics for Flexible/Wearable Heating Applications", RSC Adv., 2015, 5, 10697. https://doi.org/10.1039/C4RA10667A
  19. S.-L. Jia, H.-Z. Geng, L. Wang, Y. Tian, C.-X. Xu, P.-P. Shi, Z.-Z. Gu, X.-S. Yuan, L.-C. Jing, Z.-Y. Guo, and J. Kong, "Carbon Nanotube-based Flexible Electrothermal Film Heaters with a High Heating Rate", R. Soc. Open Sci., 2018, 5, 172072. https://doi.org/10.1098/rsos.172072
  20. L. Jiang, L. Gao, and J. Sun, "Production of Aqueous Colloidal Dispersions of Carbon Nanotubes", J. Colloid Interface Sci., 2003, 260, 89-94. https://doi.org/10.1016/S0021-9797(02)00176-5
  21. T. Zheng, G. Wang, N. Xu, C. Lu, Y. Qiao, D. Zhang, and X. Wang, "Preparation and Properties of Highly Electroconductive and Heat-Resistant CMC/Buckypaper/Epoxy Nanocomposites", Nanomaterials, 2018, 8, 969. https://doi.org/10.3390/nano8120969
  22. H. Nakajima, T. Morimoto, Y. Okigawa, T. Yamada, Y. Ikuta, K. Kawahara, H. Ago, and T. Okazaki, "Imaging of Local Structures Affecting Electrical Transport Properties of Large Graphene Sheets by Lock-in Thermography", Sci. Adv., 2019, 5, eaau3407. https://doi.org/10.1126/sciadv.aau3407
  23. S. Jiang, C. Liu, and S. Fan, "Efficient Natural-Convective Heat Transfer Properties of Carbon Nanotube Sheets and Their Roles on the Thermal Dissipation", ACS Appl. Mater. Interfaces, 2014, 6, 3075-3080. https://doi.org/10.1021/am405491t
  24. B. F. Monea, E. I. Ionete, S. I. Spiridon, D. Ion-Ebrasu, and E. Petre, "Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement", Sensors, 2019, 19, 2464. https://doi.org/10.3390/s19112464