DOI QR코드

DOI QR Code

Determination of Diversity, Distribution and Host Specificity of Korean Laccaria Using Four Approaches

  • Cho, Hae Jin (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Ki Hyeong (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Myung Soo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Cho, Yoonhee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Kim, Ji Seon (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Seo, Chang Wan (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Oh, Seung-Yoon (Department of Biology and Chemistry, Changwon National University) ;
  • Lim, Young Woon (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2021.04.13
  • Accepted : 2021.06.07
  • Published : 2021.10.31

Abstract

The genus Laccaria (Hydnangiaceae, Agaricales) plays an important role in forest ecosystems as an ectomycorrhizal fungus, contributing to nutrient cycles through symbiosis with many types of trees. Though understanding Laccaria diversity and distribution patterns, as well as its association with host plants, is fundamental to constructing a balanced plant diversity and conducting effective forest management, previous studies have not been effective in accurately investigating, as they relied heavily on specimen collection alone. To investigate the true diversity and distribution pattern of Laccaria species and determine their host types, we used four different approaches: specimen-based analysis, open database search (ODS), NGS analysis, and species-specific PCR (SSP). As a result, 14 Laccaria species have been confirmed in Korea. Results regarding the species distribution pattern were different between specimen-based analysis and SSP. However, when both were integrated, the exact distribution pattern of each Laccaria species was determined. In addition, the SSP revealed that many Laccaria species have a wide range of host types. This study shows that using these four different approaches is useful in determining the diversity, distribution, and host of ECM fungi. Furthermore, results obtained for Laccaria will serve as a baseline to help understand the role of ECM fungi in forest management in response to climate change.

Keywords

Acknowledgement

This study was supported by the Korea National Arboretum [grant number KNA1-1-25, 19-2].

References

  1. Berkeley MJ, Broome CE. XLIII-notices of British fungi. J Nat Hist. 1883;12(72):370-374.
  2. Mueller GM. The Swedish taxa of Laccaria (Tricholomataceae) with notes on their distribution. Nord J Bot. 1991;10(6):665-680. https://doi.org/10.1111/j.1756-1051.1991.tb02108.x
  3. Singer R. 1986. The Agaricales in modern taxonomy. 4th ed. Koenigstein (Germany): Koeltz Scientific Books. p. 981.
  4. Wilson AW, Hosaka K, Mueller GM. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytol. 2017; 213(4):1862-1873. https://doi.org/10.1111/nph.14270
  5. Wilson AW, May TW, Mueller GM. 2017. Biogeography of the ectomycorrhizal mushroom genus Laccaria. In: Tedersoo L, editor. Biogeography of mycorrhizal symbiosis. Ecological studies (analysis and synthesis). Vol. 230. Cham: Springer. p. 273-297.
  6. Bastide PYDL, Piche Y, Kropp BR. Vegetative interactions among mycelia of Laccaria bicolor in pure culture and in symbiosis with Pinus banksiana. Can J Bot. 1995;73(11):1768-1779. https://doi.org/10.1139/b95-189
  7. Martin F, Aerts A, Ahren D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88-92. https://doi.org/10.1038/nature06556
  8. Vincenot L, Nara K, Sthultz C, et al. Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol. 2012; 21(2):281-299. https://doi.org/10.1111/j.1365-294X.2011.05392.x
  9. Kohler A, Kuo A, Nagy LG, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet. 2015;47(4):410-415. https://doi.org/10.1038/ng.3223
  10. Mueller GM. Systematics of Laccaria (Agaricales) in the continental United States and Canada, with discussions on extralimital taxa and descriptions of extant types. Fieldiana Bot New Ser. 1992;30:158.
  11. Sheedy EM, Van de Wouw AP, Howlett BJ, et al. Multigene sequence data reveal morphologically cryptic phylogenetic species within the genus Laccaria in southern Australia. Mycologia. 2013; 105(3):547-563. https://doi.org/10.3852/12-266
  12. Cho HJ, Park MS, Lee H, et al. A systematic revision of the ectomycorrhizal genus Laccaria from Korea. Mycologia. 2018;110(5):948-961. https://doi.org/10.1080/00275514.2018.1507542
  13. Cho HJ, Lee H, Park MS, et al. Two new species of Laccaria (Agaricales, Basidiomycota) from Korea. Mycobiology. 2020;48(4):288-295. https://doi.org/10.1080/12298093.2020.1786961
  14. Jayasiri SC, Hyde KD, Ariyawansa HA, et al. The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diver. 2015;74(1):3-18. https://doi.org/10.1007/s13225-015-0351-8
  15. Ramos V, Morais J, Vasconcelos VM. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data. 2017;4(1):1-8.
  16. Schmit JP, Lodge DJ. Classical methods and modern analysis for studying fungal diversity. Mycol Ser. 2005;23:193. https://doi.org/10.1201/9781420027891.ch10
  17. Roy M, Schimann H, Braga-Neto R, et al. Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. Biotropica. 2016;48(1): 90-100. https://doi.org/10.1111/btp.12297
  18. Baptista P, Martins A, Tavares RM, et al. Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Tras-os-Montes region (Northeast Portugal). Fungal Ecol. 2010; 3(1):9-19. https://doi.org/10.1016/j.funeco.2009.06.002
  19. Bidartondo MI, Gardes M. Fungal diversity in molecular terms: profiling, identification, and quantification in the environment. Mycol Ser. 2005;23:215. https://doi.org/10.1201/9781420027891.ch11
  20. Dahlberg A, Jonsson L, Nylund JE. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot. 1997;75(8):1323-1335. https://doi.org/10.1139/b97-844
  21. Sanders IR. Plant and arbuscular mycorrhizal fungal diversity-are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol. 2004;164(3):415-418. https://doi.org/10.1111/j.1469-8137.2004.01208.x
  22. Jonsson L, Anders D, Tor-Erik B. Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. For Ecol Manage. 2000; 132(2-3):143-156. https://doi.org/10.1016/S0378-1127(99)00220-0
  23. Buee M, Reich M, Murat C, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009;184(2):449-456. https://doi.org/10.1111/j.1469-8137.2009.03003.x
  24. Taberlet P, Coissac E, Pompanon F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21(8): 2045-2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
  25. Schmidt PA, Balint M, Greshake B, et al. Illumina metabarcoding of a soil fungal community. Soil Biol Biochem. 2013;65:128-132. https://doi.org/10.1016/j.soilbio.2013.05.014
  26. Nilsson RH, Anslan S, Bahram M, et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17(2):95-109. https://doi.org/10.1038/s41579-018-0116-y
  27. Orgiazzi A, Dunbar MB, Panagos P, et al. Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biol Biochem. 2015;80:244-250. https://doi.org/10.1016/j.soilbio.2014.10.014
  28. Tedersoo L, Nilsson RH, Abarenkov K, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 2010;188(1):291-301. https://doi.org/10.1111/j.1469-8137.2010.03373.x
  29. Lin Z, Xu S, Que Y, et al. Species-specific detection and identification of Fusarium species complex, the causal agent of sugarcane Pokkah Boeng in China. PloS One. 2014;9(8):e104195. https://doi.org/10.1371/journal.pone.0104195
  30. Torres-Calzada C, Tapia-Tussell R, Quijano-Ramayo A, et al. A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Mol Biotechnol. 2011;49(1):48-55. https://doi.org/10.1007/s12033-011-9377-7
  31. Stakheev AA, Ryazantsev DY, Gagkaeva TY, et al. PCR detection of Fusarium fungi with similar profiles of the produced mycotoxins. Food Control. 2011;22(3-4):462-468. https://doi.org/10.1016/j.foodcont.2010.09.028
  32. Yaguchi T, Imanishi Y, Matsuzawa T, et al. Method for identifying heat-resistant fungi of the genus Neosartorya. J Food Prot. 2012;75(10): 1806-1813. https://doi.org/10.4315/0362-028X.JFP-12-060
  33. Liu Y, Wang XY, Gao ZT, et al. Detection of Ophiocordyceps sinensis and its common adulterates using species-specific primers. Front Microbiol. 2017;8:1179. https://doi.org/10.3389/fmicb.2017.01179
  34. Choung Y, Lee J, Cho S, et al. Review on the succession process of Pinus densiflora forests in South Korea: progressive and disturbance-driven succession. J Ecol Environ. 2020;44(1):1-17. https://doi.org/10.1186/s41610-019-0145-0
  35. White TJ, Bruns T, Lee SJWT, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990;18(1): 315-322.
  36. Gardes M, Bruns TD. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot. 1996; 74(10):1572-1583. https://doi.org/10.1139/b96-190
  37. Bahram M, Koljalg U, Courty PE, et al. The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol. 2013;101(5):1335-1344. https://doi.org/10.1111/1365-2745.12120
  38. Sota T, Kagata H, Ando Y, et al. 2014. Metagenomic approach yields insights into fungal diversity and functioning. In: Sota T, Kagata H, Ando Y, Utsumi S, Osono T, editors. Species diversity and community structure. Tokyo: Springer. p. 1-23.
  39. Jang Y, Jang S, Min M, et al. Comparison of the diversity of basidiomycetes from dead wood of the Manchurian fir (Abies holophylla) as evaluated by fruiting body collection, mycelial isolation, and 454 sequencing. Microb Ecol. 2015;70(3):634-645. https://doi.org/10.1007/s00248-015-0616-5
  40. Park MS, Oh SY, Fong JJ, et al. The diversity and ecological roles of Penicillium in intertidal zones. Sci Rep. 2019;9(1):1-11. https://doi.org/10.1038/s41598-018-37186-2
  41. Dahlberg A. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol. 2001;150(3):555-562. https://doi.org/10.1046/j.1469-8137.2001.00142.x
  42. Tedersoo L, Suvi T, Larsson E, et al. Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res. 2006;110(6):734-748. https://doi.org/10.1016/j.mycres.2006.04.007
  43. Porter TM, Skillman JE, Moncalvo JM. Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario. Mol Ecol. 2008; 17(13):3037-3050. https://doi.org/10.1111/j.1365-294X.2008.03813.x
  44. Wilson AW, Hosaka K, Perry BA, et al. Laccaria (Agaricomycetes, Basidiomycota) from Tibet (Xizang Autonomous Region, China). Mycoscience. 2013;54(6):406-419. https://doi.org/10.1016/j.myc.2013.01.006
  45. Guo Y, Li X, Zhao Z, et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci Rep. 2017;7: 46221. https://doi.org/10.1038/srep46221
  46. Heijden MGA, Martin FM, Selosse M-A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205(4): 1406-1423. https://doi.org/10.1111/nph.13288
  47. Soto-Medina E, Bolano-Rojas AC. Hongos macroscopicos en un bosque de niebla intervenido, vereda Chicoral, Valle del Cauca, Colombia. Biota Colombiana. 2013;14(2):1-12.