Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA)(Grant No. 321028-5). This work was also supported by the Korea Forestry Promotion Institute (Grant No. 2020225C10-2122-AC01).
References
- Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM. 2017. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-a review. Int. J. Biol. Macromol. 99: 308-318. https://doi.org/10.1016/j.ijbiomac.2017.02.097
- Calvino C, Macke N, Kato R, Rowan SJ. 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103: 101221. https://doi.org/10.1016/j.progpolymsci.2020.101221
- Mokhena T John M. 2020. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27: 1149-1194. https://doi.org/10.1007/s10570-019-02889-w
- Mokhena T, Sefadi J, Sadiku E, John M, Mochane M, Mtibe A. 2018. Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10: 1363. https://doi.org/10.3390/polym10121363
- Sulaeva I, Henniges U, Rosenau T, Potthast A. 2015. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol. Adv. 33: 1547-1571. https://doi.org/10.1016/j.biotechadv.2015.07.009
- Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, et al. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431. https://doi.org/10.1016/j.biomaterials.2004.02.049
- Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T. 2018. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 113: 526-533. https://doi.org/10.1016/j.ijbiomac.2018.02.135
- Choi SM, Shin EJ. 2020. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10: 406. https://doi.org/10.3390/nano10030406
- Oprea M, Voicu SI. 2020. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 247: 116683. https://doi.org/10.1016/j.carbpol.2020.116683
- van Rie J, Thielemans W. 2017. Cellulose-gold nanoparticle hybrid materials. Nanoscale 9: 8525-8554. https://doi.org/10.1039/C7NR00400A
- Fernandes IdAA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, et al. 2020. Bacterial cellulose: from production optimization to new applications. Int. J. Biol. Macromol. 164: 2598-2611. https://doi.org/10.1016/j.ijbiomac.2020.07.255
- Gao H, Sun Q, Han Z, Li J, Liao B, Hu L, et al. 2020. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr. Polym. 227: 115323. https://doi.org/10.1016/j.carbpol.2019.115323
- Jacek P, Dourado F, Gama M, Bielecki S. 2019. Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 12: 633-649. https://doi.org/10.1111/1751-7915.13386
- Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, et al. 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 45: 23-28. https://doi.org/10.2323/jgam.45.23
- Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57: 449-453. https://doi.org/10.1007/s00284-008-9228-3
- Okiyama A, Motoki M, Yamanaka S. 1992. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6: 479-487. https://doi.org/10.1016/S0268-005X(09)80033-7
- Park MS, Jung YH, Oh SY, Kim MJ, Bang WY, Lim YW. 2019. Cellulosic nanomaterial production via fermentation by Komagataeibacter sp. SFCB22-18 isolated from ripened persimmons. J. Microbiol. Biotechnol. 29: 617-624. https://doi.org/10.4014/jmb.1801.01005
- Du R, Zhao F, Peng Q, Zhou Z, Han Y. 2018. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194: 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041
- Dayal MS, Catchmark JM. 2016. Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr. Polym. 144: 447-453. https://doi.org/10.1016/j.carbpol.2016.02.055
- Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18: 1573-1583. https://doi.org/10.1007/s10570-011-9594-z
- Niamsap T, Lam NT, Sukyai P. 2019. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym. 205: 159-166. https://doi.org/10.1016/j.carbpol.2018.10.034
- Wan Y.Z, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, et al. 2006. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 66: 1825-1832. https://doi.org/10.1016/j.compscitech.2005.11.027
- Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T. 2010. Bacterial cellulose-poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64: 901-904. https://doi.org/10.1016/j.matlet.2010.01.042
- Lee HC, Zhao X. 1999. Effects of mixing conditions on the production of microbial cellulose by Acetobacter xylinum. Biotechnol. Bioprocess Eng. 4: 41-45. https://doi.org/10.1007/BF02931912
- Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045. https://doi.org/10.1007/s10570-009-9346-5
- Kim J, Cai Z, Chen Y. 2010. Biocompatible bacterial cellulose composites for biomedical application J. Nanotechnol. Eng. Med. 1: 011006. https://doi.org/10.1115/1.4000062
- Kljun A, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS. 2011. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12: 4121-4126. https://doi.org/10.1021/bm201176m
- Gao S, You C, Renneckar S, Bao J, Zhang YHP. 2014. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol. Biofuels 7: 24. https://doi.org/10.1186/1754-6834-7-24
- Foner H, Adan N. 1983. The characterization of papers by X-ray diffraction (XRD): measurement of cellulose crystallinity and determination of mineral composition. J. Forensic. Sci. Soc. 23: 313-321. https://doi.org/10.1016/S0015-7368(83)72269-3
- Jung YH, Kim IJ, Han JI, Choi IG, Kim KH. 2011. Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour. Technol. 102: 9806-9809. https://doi.org/10.1016/j.biortech.2011.07.050
- Benchabane A, Bekkour K. 2008. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid. Polym. Sci. 286: 1173. https://doi.org/10.1007/s00396-008-1882-2
- Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC. 2016. Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose 23: 367-377. https://doi.org/10.1007/s10570-015-0855-0
- Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045. https://doi.org/10.1007/s10570-009-9346-5
- Cheng KC, Catchmark JM, Demirci A. 2011. Effects of CMC Addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12: 730-736. https://doi.org/10.1021/bm101363t
- Ishida T, Mitarai M, Sugano Y, Shoda M. 2003. Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478. https://doi.org/10.1002/bit.10690
- Bae S, Sugano Y, Shoda M. 2004. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J. Biosci. Bioeng. 97: 33-38. https://doi.org/10.1016/S1389-1723(04)70162-0
- Zhou L, Sun D, Hu L, Li Y, Yang J. 2007. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34: 483. https://doi.org/10.1007/s10295-007-0218-4
- Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994. https://doi.org/10.1039/c0cs00108b
- Grande CJ, Torres FG, Gomez CM, Bano MC. 2009. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5: 1605-1615. https://doi.org/10.1016/j.actbio.2009.01.022
- Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P. 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 16: 470-482.
- Yamamoto H, Horii F, Hirai A. 1996. In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses I α and I β at the early stage of incubation. Cellulose 3: 229-242. https://doi.org/10.1007/BF02228804
- Fengel D, Ludwig M. 1991. Possibilities and limits of the FTIR spectroscopy for the characterization of cellulose. Pt. 1: Comparison of various cellulose fibres and bacteria cellulose, Papier (Germany, FR)
- Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3: 10. https://doi.org/10.1186/1754-6834-3-10
- Haigler CH, Brown RM, Benziman M. 1980. Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210: 903-906. https://doi.org/10.1126/science.7434003
- Tokoh C, Takabe K, Fujita M, Saiki H. 1998. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5: 249-261. https://doi.org/10.1023/A:1009211927183
- Ling Z, Chen S, Zhang X, Takabe K, Xu F. 2017. Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci. Rep. 7: 10230. https://doi.org/10.1038/s41598-017-09885-9
- Liu H, Cheng G, Kent M, Stavila V, Simmons BA, Sale KL, et al. 2012. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Phys. Chem. B 116: 8131-8138. https://doi.org/10.1021/jp301673h
- Aissa K, Novy V, Nielsen F, Saddler J. 2018. Use of carbohydrate binding modules to elucidate the relationship between fibrillation, hydrolyzability, and accessibility of cellulosic substrates. ACS Sustain Chem. Eng. 7: 1113-1119.
- Novy V, Aissa K, Nielsen F, Straus SK, Ciesielski P, Hunt CG, et al. 2019. Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proc. Natl. Acad. Sci. USA 116: 22545-22551. https://doi.org/10.1073/pnas.1912354116
- Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH. 2010. In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour. Technol. 101: 6084-6091. https://doi.org/10.1016/j.biortech.2010.03.031