DOI QR코드

DOI QR Code

Efficacy of Lactobacillus fermentum Isolated from the Vagina of a Healthy Woman against Carbapenem-Resistant Klebsiella Infections In Vivo

  • Tajdozian, Hanieh (Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University) ;
  • Seo, Hoonhee (Probiotics Microbiome Convergence Center) ;
  • Kim, Sukyung (Probiotics Microbiome Convergence Center) ;
  • Rahim, Md Abdur (Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University) ;
  • Lee, Saebim (Probiotics Microbiome Convergence Center) ;
  • Song, Ho-Yeon (Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University)
  • Received : 2021.03.08
  • Accepted : 2021.08.23
  • Published : 2021.10.28

Abstract

Carbapenem-resistant Enterobacteriaceae (CRE) that produce Klebsiella pneumoniae carbapenemase are increasingly reported worldwide and have become more and more resistant to nearly all antibiotics during the past decade. The emergence of K. pneumoniae strains with decreased susceptibility to carbapenems, which are used as a last resort treatment option, is a significant threat to hospitalized patients worldwide as K. pneumoniae infection is responsible for a high mortality rate in the elderly and immunodeficient individuals. This study used Lactobacillus fermentum as a candidate probiotic for treating CRE-related infections and investigated its effectiveness. We treated mice with L. fermentum originating from the vaginal fluid of a healthy Korean woman and evaluated the Lactobacilli's efficacy in preventive, treatment, nonestablishment, and colonization mouse model experiments. Compared to the control, pre-treatment with L. fermentum significantly reduced body weight loss in the mouse models, and all mice survived until the end of the study. The oral administration of L. fermentum after carbapenem-resistant Klebsiella (CRK) infection decreased mortality and illness severity during a 2-week observation period and showed that it affects other strains of CRK bacteria. Also, the number of Klebsiella bacteria was decreased to below 5.5 log10 CFU/ml following oral administration of L. fermentum in the colonization model. These findings demonstrate L. fermentum's antibacterial activity and its potential to treat CRE infection in the future.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the "Regional Industry-based Organization Support Program" (Ref. No. P0001942) supervised by the Korea Institute for Advancement of Technology (KIAT). This study was also supported by the Soonchunhyang University Research Fund.

References

  1. Pineiro M, Stanton C. 2007. Probiotic bacteria: legislative framework-- requirements to evidence basis. J. Nutr. 137: 850s-853s. https://doi.org/10.1093/jn/137.3.850S
  2. Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, et al. 2016. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol. 53: 51-59. https://doi.org/10.1016/j.fm.2015.04.009
  3. Sanders ME, Gibson G, Gill HS, Guarner F. 2007. Probiotics: their potential to impact human health. Council Agric. Sci. Technol. Issue Paper 36: 1-20.
  4. Medina M, Izquierdo E, Ennahar S, Sanz Y. 2007. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150: 531-538. https://doi.org/10.1111/j.1365-2249.2007.03522.x
  5. Salminen S, Gueimonde M. 2004. Human studies on probiotics: what is scientifically proven. J. Food Sci. 69: M137-M140. https://doi.org/10.1111/j.1365-2621.2004.tb10723.x
  6. Falah F, Vasiee A, Behbahani BA, Yazdi FT, Moradi S, Mortazavi SA, et al. 2019. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microb. Pathog. 131: 246-253. https://doi.org/10.1016/j.micpath.2019.04.006
  7. McFarland LV. 2015. Probiotics for the primary and secondary prevention of C. difficile infections: a meta-analysis and systematic review. Antibiotics 4: 160-178. https://doi.org/10.3390/antibiotics4020160
  8. Mirnejad R, Vahdati AR, Rashidiani J, Erfani M, Piranfar V. 2013. The antimicrobial effect of Lactobacillus casei culture supernatant against multiple drug resistant clinical isolates of Shigella sonnei and Shigella flexneri in vitro. Iranian Red Crescent Med. J. 15: 122. https://doi.org/10.5812/ircmj.7454
  9. Kumar M, Dhaka P, Vijay D, Vergis J, Mohan V, Kumar A, et al. 2016. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int. J. Antimicrob. Agents 48: 265-270. https://doi.org/10.1016/j.ijantimicag.2016.05.014
  10. Ahn KB, Baik JE, Park O-J, Yun C-H, Han SH. 2018. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One 13: e0192694. https://doi.org/10.1371/journal.pone.0192694
  11. Chen C-C, Lai C-C, Huang H-L, Su Y-T, Chiu Y-H, Toh H-S, et al. 2020. Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae. J. Microbiol. Immunol. Infect. 54: 447-456.
  12. Girardin M, Seidman EG. 2011. Indications for the use of probiotics in gastrointestinal diseases. Dig. Dis. 29: 574-587. https://doi.org/10.1159/000332980
  13. Reid G, Burton J. 2002. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microb. Infect. 4: 319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
  14. Lebeer S, Vanderleyden J, De Keersmaecker SC. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72: 728-764. https://doi.org/10.1128/MMBR.00017-08
  15. Stober H, Maier E, Schmidt H. 2010. Protective effects of Lactobacilli, Bifidobacteria and Staphylococci on the infection of cultured HT29 cells with different enterohemorrhagic Escherichia coli serotypes are strain-specific. Int. J. Food Microbiol. 144: 133-140. https://doi.org/10.1016/j.ijfoodmicro.2010.09.010
  16. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, et al. 2010. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21: 695-701. https://doi.org/10.1016/j.foodcont.2009.10.010
  17. Otero MC, Nader-Macias ME. 2006. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 96: 35-46. https://doi.org/10.1016/j.anireprosci.2005.11.004
  18. Gardiner GE, Heinemann C, Baroja ML, Bruce AW, Beuerman D, Madrenas Jn, et al. 2002. Oral administration of the probiotic combination Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 for human intestinal applications. Int. Dairy J. 12: 191-196. https://doi.org/10.1016/S0958-6946(01)00138-8
  19. Reid G, Charbonneau D, Erb J, Kochanowski B, Beuerman D, Poehner R, et al. 2003. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol. Med. Microbiol. 35: 131-134. https://doi.org/10.1016/S0928-8244(02)00465-0
  20. Anukam K, Reid G. 2007. Lactobacillus plantarum and Lactobacillusfermentum with probiotic potentials isolated from the vagina of healthy Nigerian women. Res. J. Microbiol. 2: 81-87. https://doi.org/10.3923/jm.2007.81.87
  21. Kaur B, Balgir P, Mittu B, Chauhan A, Kumar B. 2013. Purification and physicochemical characterization of anti-Gardnerella vaginalis bacteriocin HV6b produced by Lactobacillus fermentum isolate from human vaginal ecosystem. Am. J. Biochem. Mol. Biol. 3: 91-100. https://doi.org/10.3923/ajbmb.2013.91.100
  22. Shieh M-J, Shang H-f, Liao F-H, Zhu J-S, Chien Y-W. 2011. Lactobacillus fermentum improved intestinal bacteria flora by reducing Clostridium perfringens. E Spen Eur. E J. Clin. Nutr. Metab. 6: e59-e63.
  23. Truusalu K, Mikelsaar R-H, Naaber P, Karki T, Kullisaar T, Zilmer M, et al. 2008. Eradication of Salmonella Typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol. 8: 132. https://doi.org/10.1186/1471-2180-8-132
  24. Al-Mathkhury HJ. 2012. Inhibitory effect of lactobacilli filtrate on Klebsiella pneumoniae biofilm. Iraqi Acad. Sci. J. 11: 168-179.
  25. Logan LK, Weinstein RA. 2017. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis. 215: S28-S36.
  26. Chang P-C, Chen C-C, Lu YC, Lai C-C, Huang H-L, Chuang Y-C, et al. 2018. The impact of inoculum size on the activity of cefoperazone-sulbactam against multidrug resistant organisms. J. Microbiol. Immunol. Infect. 51: 207-213. https://doi.org/10.1016/j.jmii.2017.08.026
  27. Petrosillo N, Giannella M, Lewis R, Viale P. 2013. Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Exprt Rev. Anti-Infect. Ther. 11: 159-177. https://doi.org/10.1586/eri.12.162
  28. Borer A, Saidel-Odes L, Eskira S, Nativ R, Riesenberg K, Livshiz-Riven I, et al. 2012. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am. J. Infect. Control 40: 421-425. https://doi.org/10.1016/j.ajic.2011.05.022
  29. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. 2009. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol. 30: 972-976. https://doi.org/10.1086/605922
  30. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA. 2015. Detection of bla IMP4 and bla NDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerg. Health Threats J. 8: 26011. https://doi.org/10.3402/ehtj.v8.26011
  31. El-Mokhtar MA, Hassanein KM, Ahmed AS, Gad GF, Amin MM, Hassanein OF. 2020. Antagonistic activities of cell-free supernatants of lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect. Drug Res. 13: 543. https://doi.org/10.2147/idr.s235603
  32. Thumu SCR, Halami PM. 2020. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. J. Sci. Food Agric. 100: 705-713. https://doi.org/10.1002/jsfa.10071
  33. Boris S, Barbes C. 2000. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2: 543-546. https://doi.org/10.1016/S1286-4579(00)00313-0
  34. Gill HS. 2003. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 17: 755-773. https://doi.org/10.1016/S1521-6918(03)00074-X
  35. Bezkorovainy A. 2001. Probiotics: determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73: 399s-405s. https://doi.org/10.1093/ajcn/73.2.399s
  36. Sullivan A, Nord CE. 2002. Probiotics in human infections. J. Antimicrob. Chemother. 50: 625-627. https://doi.org/10.1093/jac/dkf194
  37. Sullivan A, Nord C. 2002. The place of probiotics in human intestinal infections. Int. J. Antimicrob. Agents 20: 313-319. https://doi.org/10.1016/S0924-8579(02)00199-1
  38. Maldonado N, Silva de Ruiz C, Cecilia M, Nader-Macias M. 2007. A simple technique to detect Klebsiella biofilm-forming-strains. Inhibitory potential of Lactobacillus fermentum CRL 1058 whole cells and products. Commun. Curr. Res. Educ. Topics Trends Appl. Microbiol. 52-59.
  39. Lee BY, Bartsch SM, Wong KF, McKinnell JA, Slayton RB, Miller LG, et al. 2016. The potential trajectory of carbapenem-resistant Enterobacteriaceae, an emerging threat to health-care facilities, and the impact of the centers for disease control and prevention toolkit. Am. J. Epidemiol. 183: 471-479. https://doi.org/10.1093/aje/kwv299
  40. Choby JE, Howard-Anderson J, Weiss DS. 2020. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives. J. Int. Med. 287: 283-300. https://doi.org/10.1111/joim.13007
  41. Caballero S, Carter R, Ke X, Susac B, Leiner IM, Kim GJ, et al. 2015. Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog. 11: e1005132. https://doi.org/10.1371/journal.ppat.1005132
  42. Kesteman A-S, Perrin-Guyomard A, Laurentie M, Sanders P, Toutain P-L, Bousquet-Melou A. 2010. Emergence of resistant Klebsiella pneumoniae in the intestinal tract during successful treatment of Klebsiella pneumoniae lung infection in rats. Antimicrob. Agents Chemother. 54: 2960-2964. https://doi.org/10.1128/aac.01612-09
  43. Wu T, Xu F, Su C, Li H, Lv N, Liu Y, et al. 2020. Alterations in the gut microbiome and cecal metabolome during Klebsiella pneumoniae-induced pneumosepsis. Front. Immunol. 11: 1331. https://doi.org/10.3389/fimmu.2020.01331
  44. Lee I-A, Kim D-H. 2011. Klebsiella pneumoniae increases the risk of inflammation and colitis in a murine model of intestinal bowel disease. Scand. J. Gastroenterol. 46: 684-693. https://doi.org/10.3109/00365521.2011.560678
  45. Smith G, Blackwell C, Nuki G. 1997. Faecal flora in spondyloarthropathy. Br. J. Rheumatol. 36: 850-854. https://doi.org/10.1093/rheumatology/36.8.850
  46. Schechner V, Kotlovsky T, Kazma M, Mishali H, Schwartz D, Navon-Venezia S, et al. 2013. Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin. Microbiol. Infect. 19: 451-456. https://doi.org/10.1111/j.1469-0691.2012.03888.x
  47. Giani T, Tascini C, Arena F, Ciullo I, Conte V, Leonildi A, et al. 2012. Rapid detection of intestinal carriage of Klebsiella pneumoniae producing KPC carbapenemase during an outbreak. J. Hosp. Infect. 81: 119-122. https://doi.org/10.1016/j.jhin.2012.04.004
  48. Qiao F, Huang W, Gao S, Cai L, Zhu S, Wei L, et al. 2020. Risk factor for intestinal carriage of carbapenem-resistant Acinetobacter baumannii and the impact on subsequent infection among patients in an intensive care unit: an observational study. BMJ Open 10: e035893. https://doi.org/10.1136/bmjopen-2019-035893
  49. Kang C-H, Kim Y, Han SH, Kim J-S, Paek N-S, So J-S. 2018. In vitro probiotic properties of vaginal Lactobacillus fermentum MG901 and Lactobacillus plantarum MG989 against Candida albicans. Eur. J. Obstet. Gynecol. Reprod. Biol. 228: 232-237. https://doi.org/10.1016/j.ejogrb.2018.07.005
  50. Strus M, Kucharska A, Kukla G, Brzychczy-Wloch M, Maresz K, Heczko PB. 2005. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect. Dis. Obstet. Gynecol. 13: 280414.
  51. Mikelsaar M, Zilmer M. 2009. Lactobacillus fermentum ME-3-an antimicrobial and antioxidative probiotic. Microb. Ecol. Health Dis. 21: 1-27. https://doi.org/10.1080/08910600902815561
  52. Chen X, Zhao X, Wang H, Yang Z, Li J, Suo H. 2017. Prevent effects of Lactobacillus fermentum HY01 on dextran sulfate sodium-induced colitis in mice. Nutrients 9: 545. https://doi.org/10.3390/nu9060545
  53. Carmo MSd, Noronha FMF, Arruda MO, Costa EPdS, Bomfim MRQ, Monteiro AS, et al. 2016. Lactobacillus fermentum ATCC 23271 displays In vitro inhibitory activities against Candida spp. Front. Microbiol. 7: 1722. https://doi.org/10.3389/fmicb.2016.01722
  54. Waki N, Kuwabara Y, Yoshikawa Y, Suganuma H, Koide H, Oku N, et al. 2017. Amelioration of Citrobacter rodentium proliferation in early stage of infection in mice by pretreatment with Lactobacillus brevis KB290 and verification using in vivo bioluminescence imaging. FEMS Microbiol. Lett. 364: fnw254.
  55. Kamaladevi A, Balamurugan K. 2016. Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection. Food Funct. 7: 3211-3223. https://doi.org/10.1039/C6FO00510A
  56. Panpetch W, Chancharoenthana W, Bootdee K, Nilgate S, Finkelman M, Tumwasorn S, et al. 2018. Lactobacillus rhamnosus L34 attenuates gut translocation-induced bacterial sepsis in murine models of leaky gut. Infect. Immun. 86: e00700-17.
  57. Lau HY, Huffnagle GB, Moore TA. 2008. Host and microbiota factors that control Klebsiella pneumoniae mucosal colonization in mice. Microbes Infect. 10: 1283-1290. https://doi.org/10.1016/j.micinf.2008.07.040
  58. Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G, et al. 2014. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food Chem. 62: 860-866. https://doi.org/10.1021/jf403288r
  59. Lkhagvadorj E, Nagata S, Wada M, Bian L, Wang C, Chiba Y, et al. 2010. Anti-infectious activity of synbiotics in a novel mouse model of methicillin-resistant Staphylococcus aureus infection. Microbiol. Immunol. 54: 265-275. https://doi.org/10.1111/j.1348-0421.2010.00224.x