DOI QR코드

DOI QR Code

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Bunterngsook, Benjarat (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Wansuksriand, Rungtiva (Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Champreda, Verawat (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology)
  • Received : 2021.06.11
  • Accepted : 2021.08.19
  • Published : 2021.10.28

Abstract

Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.

Keywords

Acknowledgement

This project was supported by a research grant from the National Science and Technology Development Agency, Thailand (Grant No. P-18-52705).

References

  1. Ohtake S, Wang, YJ. 2011. Trehalose: current use and future applications. J. Pharm. Sci. 100: 2020-2053. https://doi.org/10.1002/jps.22458
  2. Burek M, WASKIEWICZ S, Wandzik I. 2015. Trehalose-properties, biosynthesis and applications. Methods. 3: 9-10.
  3. Higashiyama T. 2002. Novel functions and applications of trehalose. Pure Appl. 74: 1263-1269. https://doi.org/10.1351/pac200274071263
  4. Lin YF, Su PC, Chen PT. 2020. Production and characterization of a recombinant thermophilic trehalose synthase from Thermus antranikianii. J. Biosci. Bioeng. 129: 418-422. https://doi.org/10.1016/j.jbiosc.2019.10.009
  5. Lemieux RU, Bauer HF. 1954. A chemical synthesis of D-trehalose. Can. J. Chem. 32: 340-344. https://doi.org/10.1139/v54-044
  6. Elbein AD, Pan YT, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R-27R. https://doi.org/10.1093/glycob/cwg047
  7. Mahmud SA, Hirasawa T, Shimizu H. 2010. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J. Biosci. Bioeng. 109: 262-266. https://doi.org/10.1016/j.jbiosc.2009.08.500
  8. Wiemken A. 1990 Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 58: 209-217. https://doi.org/10.1007/BF00548935
  9. Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, et al. 2016. Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface. J. Agric. Food Chem. 64: 6179-6187. https://doi.org/10.1021/acs.jafc.6b02175
  10. Kobayashi K, Komeda T, Miura Y, Kettoku M, Kato M. 1997. Production of trehalose from starch by novel trehalose-producing enzymes from Sulfolobus solfataricus KM1. J. Ferment. Bioeng. 83: 296-298. https://doi.org/10.1016/S0922-338X(97)80996-8
  11. Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, et al. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch-Starke. 49: 26-30. https://doi.org/10.1002/star.19970490107
  12. Teramoto N, Sachinvala ND, Shibata M. 2008. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13: 1773-1816. https://doi.org/10.3390/molecules13081773
  13. Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, et al. 2018. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl. Microbiol. Biotechnol. 102: 2965-2976. https://doi.org/10.1007/s00253-018-8814-y
  14. Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, et al. 1997. Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923. Biochim. Biophys. Acta 1334: 28-32. https://doi.org/10.1016/S0304-4165(96)00103-1
  15. Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Caroll JD, Pastuszak I, et al. 2004. Trehalose synthase of Mycobacterium smegmatis. Eur. J. Biochem. 271: 4259-4269. https://doi.org/10.1111/j.1432-1033.2004.04365.x
  16. Chen YS, Lee GC, Shaw JF. 2006. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J. Agric. Food Chem. 54: 7098-7104. https://doi.org/10.1021/jf060828q
  17. Filipkowski P, Pietrow O, Panek A, Synowiecki J. 2012. Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli. Acta Biochim. Pol. 59: 425-431.
  18. Kim TK, Jang JH, Cho HY, Lee HS, Kim YW. 2010. Gene cloning and characterization of a trehalose synthase from Corynebacterium glutamicum ATCC13032. Food Sci. Biotechnol. 19: 565-569. https://doi.org/10.1007/s10068-010-0079-x
  19. Lee JH, Lee KH, Kim CG, Lee SY, Kim GJ, Park YH, et al. 2005. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol. Biotechnol. 68: 213-219. https://doi.org/10.1007/s00253-004-1862-5
  20. Cho YJ, Park OJ, Shin HJ. 2006. Immobilization of thermostable trehalose synthase for the production of trehalose. Enzyme Microb. Technol. 39: 108-113. https://doi.org/10.1016/j.enzmictec.2005.10.004
  21. Nguyen THT, Nguyen TT, Le TH, Nguyen TAT, Nguyen MD, Le, DM, Do TT. 2018. Screening bacterial strains for production of maltooligosyl trehalose trehalohydrolase and maltooligosyl trehalose synthase. J. Viet. Env. 9: 55-60. https://doi.org/10.13141/jve.vol9.no2.pp55-60
  22. Zhu Y, Wei D, Zhang J, Wang Y, Xu H, Xing L, et al. 2010. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber. Extremophiles 14: 1-8. https://doi.org/10.1007/s00792-009-0281-z
  23. Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, et al. 2019. Characterization of a recombinant trehalose synthase from Arthrobacter chlorophenolicus and its unique kinetics indicating a substrate cooperativity. Appl. Biochem. Biotechnol. 187: 1255-1271. https://doi.org/10.1007/s12010-018-2877-1
  24. Dueholm MS, Albertsen M, D'Imperio S, Tale VP, Lewis D, Nielsen, PH., et al. 2014. Complete genome sequences of Pseudomonas monteilii SB3078 and SB3101, two benzene-, toluene-, and ethylbenzene-degrading bacteria used for bioaugmentation. Genome Announ. 2: e00514-e00524.
  25. Kuschel B, Seitl I, Gluck C, Mu W, Jiang B, Stressler T, et al. 2017. Hidden reaction: mesophilic cellobiose 2-epimerases produce lactulose. J. Agric. Food Chem. 65: 2530-2539. https://doi.org/10.1021/acs.jafc.6b05599
  26. Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, et al. 1995. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 59: 1829-1834. https://doi.org/10.1271/bbb.59.1829
  27. Zhu Y, Zhang J, Wei D, Wang Y, Chen X, Xing L, et al. 2008. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China. Biosci. Biotechnol. Biochem. 72: 2019-2024. https://doi.org/10.1271/bbb.80134
  28. Dong Y, Ma L, Duan Y. 2016. The effect of high pressure on the intracellular trehalose synthase activity of Thermus aquaticus. World J. Microbiol. 32: 11. https://doi.org/10.1007/s11274-015-1958-3
  29. Schiraldi C, Lernia I Di, Rosa M De. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  30. Janecek S, Svensson B, MacGregor EA. 2014. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170. https://doi.org/10.1007/s00018-013-1388-z
  31. Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, et al. 2011. Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis. J. Biol. Chem. 286: 35601-35609. https://doi.org/10.1074/jbc.M111.280362
  32. Liang J, Huang R, Huang Y, Wang X, Du L, Wei Y. Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. J. Mol. Catal. B Enzym. 90: 26-32. https://doi.org/10.1016/j.molcatb.2013.01.014
  33. Yan J, Qiao Y, Hu J, Ding H. 2013. Cloning, expression and characterization of a trehalose synthase gene from Rhodococcus opacus. Protein J. 32: 223-229. https://doi.org/10.1007/s10930-013-9476-3
  34. Keenleyside W. 2019. Microbiology: Canadian Edition. Pressbooks, Montreal, Canada.
  35. Gao Y, Xi Y, Lu XL, Zheng H, Hu B, Liu XY, et al. 2013. Cloning, expression and functional characterization of a novel trehalose synthase from marine Pseudomonas sp. P8005. World J. Microbiol. Biotechnol. 29: 2195-2206. https://doi.org/10.1007/s11274-013-1385-2
  36. Vardharajula S. 2013. Isolation and identification of a thermotolerant plant growth promoting Pseudomonas putida producing trehalose synthase. J. Microbiol. Biotechnol. Food Sci. 3: 63-68.
  37. Wu XL, Ding HB, Yue M, Qiao Y. 2009. Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl. Microbiol. Biotechnol. 83: 477-482. https://doi.org/10.1007/s00253-009-1863-5
  38. Li Y, Sun X, Feng Y, Yuan Q. 2015. Cloning, expression and activity optimization of trehalose synthase from Thermus thermophilus HB27. Chem. Eng. Sci. 135: 323-329. https://doi.org/10.1016/j.ces.2015.02.034
  39. Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF. 2007. Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J. Agric. Food Chem. 55: 3435-3443. https://doi.org/10.1021/jf070181p
  40. Wang J, Ren X, Wang R, Su J, Wang F. 2017. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. J. Agric. Food Chem. 65: 7726-7735. https://doi.org/10.1021/acs.jafc.7b02732
  41. Yang S, Lv X, Wang X, Wang J, Wang R, Wang T. 2017. Cell-surface displayed expression of trehalose synthase from Pseudomonas putida ATCC 47054 in Pichia pastoris using Pir1p as an anchor protein. Front. Microbiol. 8: 2583. https://doi.org/10.3389/fmicb.2017.02583
  42. Liu H, Yang S, Wang X, Wang T. 2019. Production of trehalose with trehalose synthase expressed and displayed on the surface of Bacillus subtilis spores. Microb. Cell Fact. 18: 1-13. https://doi.org/10.1186/s12934-018-1049-x
  43. Buisson G, Duee E, Haser R, Payan F. 1987. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 6: 3909-3916. https://doi.org/10.1002/j.1460-2075.1987.tb02731.x
  44. Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M. 2003. Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J. Biol. Chem. 278: 9875-9884. https://doi.org/10.1074/jbc.M211339200
  45. Chai KP, Othman NFB, Teh A-H, Ho KL, Chan K-G, Shamsir MS, et al. 2016. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep. 6: 23126. https://doi.org/10.1038/srep23126
  46. Li H, Chi Z, Wang X, Duan X, Ma L, Gao L. 2007. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb. Technol. 40: 1006-1012. https://doi.org/10.1016/j.enzmictec.2006.07.036
  47. Chakraborty S, Raut G, Khopade A, Mahadik K, Kokare C. 2012. Study on calcium ion independent α-amylase from haloalkaliphilic marine Streptomyces strain A3. Indian J. Biotech. 11: 427-437.
  48. Yue M, Wu XL, Gong WN, Ding HB. 2009. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei. Microb. Cell Fact. 8: 34. https://doi.org/10.1186/1475-2859-8-34
  49. Koh S, Kim J, Shin HJ, Lee D, Bae J, Kim D, et al. 2003.Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydr. Res. 338: 1339-1343. https://doi.org/10.1016/S0008-6215(03)00172-1