Acknowledgement
This research was supported by Kyungpook National University Development Project Research Fund, 2018.
References
- Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524. https://doi.org/10.1128/mr.50.4.484-524.1986
- Matta-el-Ammouri G, Janati-Idrissi R, Junelles AM, Petitdemange H, Gay R. 1987. Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum. Biochimie 69: 109-115. https://doi.org/10.1016/0300-9084(87)90242-2
- Amador-Noguez D, Brasg IA, Feng X-J, Roquet N, Rabinowitz JD. 2011. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Appl. Environ. Microbiol. 77: 7984-7997. https://doi.org/10.1128/AEM.05374-11
- Speakman HB. 1920. Gas production during the acetone and butyl alcohol fermentation of starch. J. Biol. Chem. 43: 401-411. https://doi.org/10.1016/S0021-9258(18)86291-3
- Millat T, Janssen H, Thorn GJ, King JR, Bahl H, Fischer R-J, et al. 2013. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl. Microbiol. Biotechnol. 97: 6451-6466. https://doi.org/10.1007/s00253-013-4860-7
- Millat T, Janssen H, Bahl H, Fischer RJ, Wolkenhauer O. 2013. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb. Biotechnol. 6: 526-539. https://doi.org/10.1111/1751-7915.12033
- Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, et al. 2008. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 9: R114. https://doi.org/10.1186/gb-2008-9-7-r114
- Janssen H, Doring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, et al. 2010. A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl. Microbiol. Biotechnol. 87: 2209-2226. https://doi.org/10.1007/s00253-010-2741-x
- Grimmler C, Janssen H, Kraube D, Fischer R-J, Bahl H, Durre P, et al. 2011. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J. Mol. Microbiol. Biotechnol. 20: 1-15. https://doi.org/10.1159/000320973
- Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN. 1988. Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli. J. Bacteriol. 170: 4613-4618. https://doi.org/10.1128/jb.170.10.4613-4618.1988
- Papoutsakis E, Bennett G. 1997. Molecular regulation and metabolic engineering of solvent production by Clostridium acetobutylicum. Bioprocess Technol. 24: 253-280.
- Steinbuchel A, Lutke-Eversloh T. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96. https://doi.org/10.1016/S1369-703X(03)00036-6
- Lutke-Eversloh T, Steinbuchel A. 2004. Microbial polythioesters. Macromol. Biosci. 4: 166-174.
- Yu J-L, Xia X-X, Zhong J-J, Qian Z-G. 2014. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol. Bioeng. 111: 2580-2586. https://doi.org/10.1002/bit.25293
- Saini M, Wang ZW, Chiang C-J, Chao Y-P. 2014. Metabolic engineering of Escherichia coli for production of butyric acid. J. Agric. Food Chem. 62: 4342-4348. https://doi.org/10.1021/jf500355p
- Lutke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bogershausen A, et al. 2002. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat. Mater. 1: 236-240. https://doi.org/10.1038/nmat773
- Xu QS, Shin DH, Pufan R, Yokota H, Kim R, Kim SH. 2004. Crystal structure of a phosphotransacetylase from Streptococcus pyogenes. Proteins 55: 479-481. https://doi.org/10.1002/prot.20039
- Xu QS, Jancarik J, Lou Y, Kuznetsova K, Yakunin AF, Yokota H, et al. 2005. Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. J. Struct. Funct. Genomics 6: 269-279. https://doi.org/10.1007/s10969-005-9001-9
- Iyer PP, Lawrence SH, Luther KB, Rajashankar KR, Yennawar HP, Ferry JG, et al. 2004. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure (London, England : 1993) 12: 559-567. https://doi.org/10.1016/j.str.2004.03.007
- Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188: 1143-1154. https://doi.org/10.1128/JB.188.3.1143-1154.2006
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
- Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25. https://doi.org/10.1107/S0907444909042589
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
- Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26: 283-291. https://doi.org/10.1107/s0021889892009944
- Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol Crystallogr. 66: 12-21. https://doi.org/10.1107/S0907444909042073
- Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and Functional Studies Suggest a Catalytic Mechanism for the Phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188: 1143-1154. https://doi.org/10.1128/JB.188.3.1143-1154.2006
- Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
- Wiesenborn DP, Rudolph FB, Papoutsakis ET. 1989. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl. Environ. Microbiol. 55: 317-322. https://doi.org/10.1128/aem.55.2.317-322.1989
- Zhang Y, Yu M, Yang ST. 2012. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnol. Progress 28: 52-59. https://doi.org/10.1002/btpr.730
- Yoshida Y, Sato M, Nonaka T, Hasegawa Y, Kezuka Y. 2019. Characterization of the phosphotransacetylase-acetate kinase pathway for ATP production in Porphyromonas gingivalis. J. Oral Microbiol. 11: 1588086. https://doi.org/10.1080/20002297.2019.1588086
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44: W344-350. https://doi.org/10.1093/nar/gkw408