참고문헌
- Additives EPo, Feed PoSuiA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740.
- Li J, Ren F, Gu H, Li X, Gan B. 2011. Safety evaluation in vitro of Enterococcus durans from Tibetan traditional fermented yak milk. J. Microbiol. 49: 721-728. https://doi.org/10.1007/s12275-011-1062-9
- Lee DY, Seo Y-S, Rayamajhi N, Kang ML, Lee SI, Yoo HS. 2009. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J. Microbiol. 47: 663-672. https://doi.org/10.1007/s12275-009-0124-8
- De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
- Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20: 2534. https://doi.org/10.3390/ijms20102534
- Liu Y-W, Liong M-T, Tsai Y-C. 2018. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 56: 601-613. https://doi.org/10.1007/s12275-018-8079-2
- Zhang M, Jiang Y, Cai M, Yang Z. 2020. Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as analyzed by GC-MS-based metabolomics approach. J. Microbiol. Biotechnol. 30: 903-911. https://doi.org/10.4014/jmb.1911.11007
- Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107
- Mukerji P, Roper JM, Stahl B, Smith AB, Burns F, Rae JC, et al. 2016. Safety evaluation of AB-LIFE®(Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 92: 117-128. https://doi.org/10.1016/j.fct.2016.03.018
- Olek A, Woynarowski M, Ahren IL, Kierkus J, Socha P, Larsson N, et al. 2017. Efficacy and safety of Lactobacillus plantarum DSM 9843 (LP299V) in the prevention of antibiotic-associated gastrointestinal symptoms in children-randomized, double-blind, placebo-controlled study. J. Pediatr. 186: 82-86. https://doi.org/10.1016/j.jpeds.2017.03.047
- Gotteland M, Cires MJ, Carvallo C, Vega N, Ramirez MA, Morales P, et al. 2014. Probiotic screening and safety evaluation of Lactobacillus strains from plants, artisanal goat cheese, human stools, and breast milk. J. Med. Food 17: 487-495. https://doi.org/10.1089/jmf.2013.0030
- Goel A, Halami PM, Tamang JP. 2020. Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front. Microbiol. 11: 40. https://doi.org/10.3389/fmicb.2020.00040
- Park DM, Bae J-H, Kim MS, Kim H, Kang SD, Shim S, et al. 2019. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a probiotic starter for sourdough fermentation. J. Microbiol. Biotechnol. 29: 1729-1738. https://doi.org/10.4014/jmb.1907.07039
- Gueimonde M, Sanchez B, de Los Reyes-Gavilan CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4: 202. https://doi.org/10.3389/fmicb.2013.00202
- Devirgiliis C, Zinno P, Perozzi G. 2013. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol. 4: 301. https://doi.org/10.3389/fmicb.2013.00301
- Abriouel H, Munoz MdCC, Lerma LL, Montoro BP, Bockelmann W, Pichner R, et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 78: 465-481. https://doi.org/10.1016/j.foodres.2015.09.016
- Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18
- Chokesajjawatee N, Santiyanont P, Chantarasakha K, Kocharin K, Thammarongtham C, Lertampaiporn S, et al. 2020. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 10: 10241. https://doi.org/10.1038/s41598-020-66857-2
- Klarin B, Larsson A, Molin G, Jeppsson B. 2019. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiologyopen 8: e00642. https://doi.org/10.1002/mbo3.642
- Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. 2015. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50: 250-258. https://doi.org/10.1016/j.foodcont.2014.09.003
- Park S-Y, Cho S-A, Kim S-H, Lim S-D. 2014. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum Q180 isolated from feces. Korean J. Food Sci. Anim. Resour. 34: 647-655. https://doi.org/10.5851/KOSFA.2014.34.5.647
- Kwon J, Kim B, Lee C, Joung H, Kim B-K, Choi IS, et al. 2020. Comprehensive amelioration of high-fat diet-induced metabolic dysfunctions through activation of the PGC-1α pathway by probiotics treatment in mice. PLoS One 15: e0228932. https://doi.org/10.1371/journal.pone.0228932
- Park YE, Kim MS, Shim KW, Kim Y-I, Chu J, Kim B-K, et al. 2020. Effects of Lactobacillus plantarum Q180 on postprandial lipid levels and intestinal environment: A double-blind, randomized, placebo-controlled, parallel trial. Nutrients 12: 255. https://doi.org/10.3390/nu12010255
- Baek JH, Kim KH, Moon JY, Yeo S-H, Jeon CO. 2020. Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar. Int. J. Syst. Evol. Microbiol. 70: 2026-2033. https://doi.org/10.1099/ijsem.0.004008
- Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33: 623-630. https://doi.org/10.1038/nbt.3238
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963. https://doi.org/10.1371/journal.pone.0112963
- Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: 141-145.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285. https://doi.org/10.1007/s12275-018-8014-6
- Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
- Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
- Grant JR, Stothard P. 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: 181-184.
- Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: 309-314.
- Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59-60. https://doi.org/10.1038/nmeth.3176
- Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: 517-525. https://doi.org/10.1093/nar/gkz1136
- Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58: 212-220. https://doi.org/10.1128/AAC.01310-13
- Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500. https://doi.org/10.1093/jac/dkaa345
- Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: 325-328. https://doi.org/10.1093/nar/gki177
- Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44: 16-21.
- Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34: 32-36. https://doi.org/10.1093/nar/gkj409
- Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. 2011. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int. J. Food Microbiol. 144: 503-510. https://doi.org/10.1016/j.ijfoodmicro.2010.11.009
- Binetti AG, Del Rio B, Martin MC, Alvarez MA. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl. Environ. Microbiol. 71: 6096-6103. https://doi.org/10.1128/AEM.71.10.6096-6103.2005
- Clinical and laboratory standards institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A9. Wayne, PA, USA.
- Beecher DJ, Schoeni JL, Wong A. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428. https://doi.org/10.1128/iai.63.11.4423-4428.1995
- Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. 2019. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol. 82: 465-473. https://doi.org/10.1016/j.fm.2019.02.017
- Bruckner H, Flassig S, Kirschbaum J. 2012. Determination of biogenic amines in infusions of tea (Camellia sinensis) by HPLC after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Amino Acids 42: 877-885. https://doi.org/10.1007/s00726-011-1003-2
- Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
- Domig KJ, Zycka-Krzesinska J, Bardowski J, Morelli L. 2008. Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int. J. Probiotics Prebiotics 3: 271-280.
- Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739. https://doi.org/10.1128/AEM.02105-06
- Mayrhofer S, Van Hoek AH, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2010.08.024
- Lahtinen SJ, Boyle RJ, Margolles A, Frias R, Gueimonde M. 2009. Safety assessment of probiotics. Prebiotics probiotics Sci. Technol. Springer-Verlag press, Berlin.
- Cebeci A, Gurakan C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20: 511-518. https://doi.org/10.1016/S0740-0020(02)00174-0
- Huycke MM, Spiegel CA, Gilmore MS. 1991. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1626-1634. https://doi.org/10.1128/AAC.35.8.1626
- Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. 2014. Antibiotic resistance among commercially available probiotics. Food Res. Int. 57: 176-195. https://doi.org/10.1016/j.foodres.2014.01.025
- Florez AB, Egervarn M, Danielsen M, Tosi L, Morelli L, Lindgren S, et al. 2006. Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values. Microb. Drug Resist. 12: 252-256. https://doi.org/10.1089/mdr.2006.12.252
- Zhang F, Gao J, Wang B, Huo D, Wang Z, Zhang J, et al. 2018. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum. J. Dairy Sci. 101: 2867-2874. https://doi.org/10.3168/jds.2017-13323
- Facklam RR, Carvalho MdGS, Teixeira LM. 2002. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM press, Washington, D.C., USA.
- Zoletti GO, Pereira EM, Schuenck RP, Teixeira LM, Siqueira Jr JF, dos Santos KRN. 2011. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res. Microbiol. 162: 151-158. https://doi.org/10.1016/j.resmic.2010.09.018
- Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, et al. 2019. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob. Proteins 12: 683-696. https://doi.org/10.1007/s12602-019-09543-8
- Kenfack CHM, Ngoufack FZ, Kaktcham PM, Wang YR, Zhu T, Yin L. 2018. Safety and antioxidant properties of five probiotic Lactobacillus plantarum strains isolated from the digestive tract of honey bees. Am. J. Microbiol. Res. 6: 1-8. https://doi.org/10.12691/ajmr-6-1-1
- Wojcik W, Lukasiewicz M, Puppel K. 2021. Biogenic amines: formation, action and toxicity-a review. J. Sci. Food Agric. 101: 2634-2640. https://doi.org/10.1002/jsfa.10928
- Kim S, Huang E, Park S, Holzapfel W, Lim S-D. 2018. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean J. Food Sci. Anim. Resour. 38: 554-569. https://doi.org/10.5851/KOSFA.2018.38.3.554
- Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y. 2020. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. J. Dairy Sci. 103: 5916-5930. https://doi.org/10.3168/jds.2019-18047
- Priyanka V, Ramesha A, Gayathri D, Vasudha M. 2020. Molecular characterization of non-biogenic amines producing Lactobacillus plantarum GP11 isolated from traditional pickles using HRESI-MS analysis. J. Food Sci. Technol. 58: 2216-2226.