DOI QR코드

DOI QR Code

Anthropogenic Gadolinium (Gd) Inputs into the Ocean: Review and Future Direction

인위적 기원 가돌리늄(gadolinium)의 해양 유입 연구 동향 및 향후 연구 방향

  • Kim, Intae (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology)
  • 김인태 (한국해양과학기술원 해양환경연구센터)
  • Received : 2021.06.08
  • Accepted : 2021.08.21
  • Published : 2021.09.30

Abstract

Gadolinium (Gd), one of a rare earth element (REE), has been widely used worldwide since the 1980s, as a resource material for contrast agents injected into examiners of magnetic resonance imaging (MRI) test. The organic complexed form of Gd shows an extremely stable behavior in natural environment (water), so is known that the artificial Gd from medical uses is not removed from the waste water treatment plant (WWTP) and eventually introduced into the ocean through the estuary. Since the 1990s, some previous studies have often been conducted on Gd anomalies in natural water and their effects an artificial origin from land or metropolitan areas, but little research has been potential impacts on the ocean water. In this paper, we review and introduce recent studies related to Gd anomaly in natural water and related marine effects, and also propose the future research directions.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원의 주요 연구사업(PE99912)과 한국연구재단의 신진연구(PN90300)의 연구비 지원으로 작성되었습니다.

References

  1. Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363-372 https://doi.org/10.1016/S0016-7037(98)00279-8
  2. Alibo DS, Nozaki Y (2000) Dissolved rare earth elements in the South China Sea: geochemical characterization of the water masses. J Geophys Res-Oceans 105:28771-28783 https://doi.org/10.1029/1999JC000283
  3. Alibo DS, Nozaki Y (2004) Dissolved rare earth elements in the eastern Indian Ocean: chemical tracers of the water masses. Deep-Sea Res Pt I 51:559-576 https://doi.org/10.1016/j.dsr.2003.11.004
  4. Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143:245-255 https://doi.org/10.1016/0012-821X(96)00127-6
  5. Bau M, Knappe A, Dulski P (2006) Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chem ErdeGeochem 66:143-152 https://doi.org/10.1016/j.chemer.2006.01.002
  6. Bellin MF, Vasile M, Morel-Precetti S (2003) Currently used non-specific extracellular MR contrast media. Eur Radiol 13:2688-2698 https://doi.org/10.1007/s00330-003-1912-x
  7. Brucher E, Tircso G, Baranyai Z, Kovacs Z, Sherry AD (2013) Stability and toxicity of contrast agents. In: Merbach AS, Helm L, Toth E ( eds) The chemistry of contrast agents in medical magnetic resonance imaging (2nd edition) vol 2. John Wiley and Sons, West Sussex, pp 157-208
  8. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512-523 https://doi.org/10.1039/b510982p
  9. Caravan P, Comuzzi C, Crooks W, McMurry TJ, Choppin GR, Woulfe SR (2001) Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg Chem 40:2170-2176 https://doi.org/10.1021/ic001117r
  10. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293-2352 https://doi.org/10.1021/cr980440x
  11. Carr DH, Brown J, Bydder GM, Steiner RE, Weinmann HJ, Speck U, Hall AS, Young IR (1984) Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. American J Roentgenol 143:215-224 https://doi.org/10.2214/ajr.143.2.215
  12. Chevis DA, Johannesson KH, Burdige DJ, Cable JE, Martin JB, Roy M (2015) Rare earth element cycling in a sandy subterranean estuary in Florida, USA. Mar Chem 176:34-50 https://doi.org/10.1016/j.marchem.2015.07.003
  13. de Campos FF, Enzweiler J (2016) Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil. Environ Monit Assess 188:281. doi:10.1007/s10661-016-5282-7
  14. Ebrahimi P, Barbieri M (2019) Gadolinium as an emerging microcontaminant in water resources: threats and opportunities. Geosci 9:93. doi:10.3390/geosciences9020093
  15. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214-219 https://doi.org/10.1038/296214a0
  16. Goldberg ED, Koide M, Schmitt RA, Smith RH (1963) Rare-Earth distributions in the marine environment. J Geophys Res 68:4209-4217 https://doi.org/10.1029/JZ068i014p04209
  17. Hasdenteufel F, Luyasu S, Renaudin JM, Paquay JL, Carbutti G, Beaudouin E, Moneret-Vautrin DA, Kanny G (2008) Anaphylactic shock after first exposure to gadoterate meglumine: two case reports documented by positive allergy assessment. J Allergy Clin Immunol 121:527-528 https://doi.org/10.1016/j.jaci.2007.08.027
  18. Hatje V, Bruland KW, Flegal AR (2014) Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1® resin: method development and application in the San Francisco Bay plume. Mar Chem 160:34-41 https://doi.org/10.1016/j.marchem.2014.01.006
  19. Hatje V, Bruland KW, Flegal AR (2016) Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ Sci Tech 50(8):4159-4168 https://doi.org/10.1021/acs.est.5b04322
  20. Henderson P (2013) Rare earth element geochemistry. Elsevier, Amsterdam, 501 p
  21. Hennebruder K, Wennrich R, Mattusch J, Stark HJ, Engewald W (2004) Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta 63:309-316 https://doi.org/10.1016/j.talanta.2003.10.053
  22. Johannesson KH, Chevis DA, Burdige DJ, Cable JE, Martin JB, Roy M (2011) Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA. Geochim Cosmochim Ac 75:825-843 https://doi.org/10.1016/j.gca.2010.11.005
  23. Johannesson KH, Palmore CD, Fackrell J, Prouty NG, Swarzenski PW, Chevis DA, Telfeyan K, White CD, Burdige DJ (2017) Rare earth element behavior during groundwater-seawater mixing along the Kona Coast of Hawaii. Geochim Cosmochim Ac 198:229-258 https://doi.org/10.1016/j.gca.2016.11.009
  24. Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloy Compd 408:1339-1343 https://doi.org/10.1016/j.jallcom.2005.04.033
  25. KHIDI (2018) Brief of health industry, market analysis of medical device. Korea Health Industry Development Institute, http://medicaldevice.khidi.or.kr Accessed 30 Mar 2021
  26. Kim G, Lee KK, Park KS, Hwang DW, Yang HS ( 2003) Large submarine groundwater discharge (SGD) from a volcanic island. Geophys Res Lett 30(21):2098. doi:10.1029/2003GL018378
  27. Kim G, Ryu JW, Hwang DW (2008) Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar Chem 109:307-317 https://doi.org/10.1016/j.marchem.2007.07.002
  28. Kim I, Kim G (2011) Large fluxes of rare earth elements through submarine groundwater discharge (SGD) from a volcanic island, Jeju, Korea. Mar Chem 127:12-19 https://doi.org/10.1016/j.marchem.2011.07.006
  29. Kim I, Kim G (2014) Submarine groundwater discharge as a main source of rare earth elements in coastal waters. Mar Chem 160:11-17. doi:10.1016/j.marpolbul.2020.111589
  30. Kim I, Kim S, Kim G (2010) Analytical artifacts associated with the chelating resin extraction of dissolved rare earth elements in natural water samples. Aquat Geochem 16: 611-620 https://doi.org/10.1007/s10498-010-9100-5
  31. Kim I, Kim SH, Kim G (2020a) Anthropogenic gadolinium in lakes and rivers near metrocities in Korea. Environ Sci: Process Impacts 22:144-151 https://doi.org/10.1039/c9em00304e
  32. Kim T, Kim H, Kim G (2020b) Tracing river water versus wastewater sources of trace elements using rare earth elements in the Nakdong River estuarine waters. Mar Pollut Bull 160:111589 https://doi.org/10.1016/j.marpolbul.2020.111589
  33. Knappe A, Moller P, Dulski P, Pekdeger A (2005) Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Geochem 65:167-189 https://doi.org/10.1016/j.chemer.2004.08.004
  34. Kulaksiz S, Bau M (2007) Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet Sc Lett 260:361-371 https://doi.org/10.1016/j.epsl.2007.06.016
  35. Kulaksiz S, Bau M (2011a) Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int 37(5):973-979 https://doi.org/10.1016/j.envint.2011.02.018
  36. Kulaksiz S, Bau M (2011b) Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl Geochem 26:1877-1885 https://doi.org/10.1016/j.apgeochem.2011.06.011
  37. Lawrence MG, Kamber BS (2007) Rare earth element concentrations in the natural water reference materials (NRCC) NASS-5, CASS-4 and SLEW-3. Geostand Geoanal Res 31:95-103 https://doi.org/10.1111/j.1751-908X.2007.00850.x
  38. Lawrence MG, Ort C, Keller J (2009) Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Res 43:3534-3540 https://doi.org/10.1016/j.watres.2009.04.033
  39. Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour Policy 38:36-43 https://doi.org/10.1016/j.resourpol.2012.07.001
  40. Masuda A, Ikeuchi Y (1979) Lanthanide tetrad effect observed in marine environment. Geochem J 13:19-22 https://doi.org/10.2343/geochemj.13.19
  41. McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes (Ch. 7). Rev Mineral 21:169-200
  42. McLennan SM (1994) Rare earth element geochemistry and the "tetrad" effect. Geochim Cosmochim Ac 58:2025-2033 https://doi.org/10.1016/0016-7037(94)90282-8
  43. Merschel G, Bau M, Baldewein L, Dantas EL, Walde D, Buhn B (2015) Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: anthropogenic gadolinium and geogenic REEs in Lake Paranoa, Brasilia. C R Geosci 347:284-293 https://doi.org/10.1016/j.crte.2015.01.004
  44. Moller P, Morteani G, Dulski P (2003) Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydrochim Hydrobiol 31:225-239 https://doi.org/10.1002/aheh.200300492
  45. Nozaki Y, Lerche D, Alibo DS, Tsutsumi M (2000) Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and In. Geochim Cosmochim Ac 64:3975-3982 https://doi.org/10.1016/S0016-7037(00)00472-5
  46. OECD (2021) Magnetic Resonance Imaging (MRI) exams. https://doi.org/10.1787/1d89353f-en Accessed 30 Mar 2021
  47. Osborne AH, Haley BA, Hathorne EC, Plancherel Y, Frank M (2015) Rare earth element distribution in Caribbean seawater: continental inputs versus lateral transport of distinct REE compositions in subsurface water masses. Mar Chem 177:172-183 https://doi.org/10.1016/j.marchem.2015.03.013
  48. Pedreira RM, Pahnke K, Boning P, Hatje V (2018) Tracking hospital effluent-derived gadolinium in Atlantic coastal waters off Brazil. Water Res 145:62-72 https://doi.org/10.1016/j.watres.2018.08.005
  49. Raju CSK, Luck D, Scharf H, Jakubowski N, Panne U (2010) A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment. J Anal Atom Spectrom 25: 1573-1580 https://doi.org/10.1039/c003251d
  50. Raut NM, Huang LS, Aggarwal SK, Lin KC (2005) Mathematical correction for polyatomic isobaric spectral interferences in determination of lanthanides by inductively coupled plasma mass spectrometry. J Chin Chem Soc 52(4):589-597 https://doi.org/10.1002/jccs.200500087
  51. Rogowska J, Olkowska E, Ratajczyk W, Wolska L (2018) Gadolinium as a new emerging contaminant of aquatic environments. Environ Toxicol Chem 37(6):1523-1534 https://doi.org/10.1002/etc.4116
  52. Rudnick RL, Gao S (2003) Composition of the continental crust. In. Holland HD, Turekian KK (eds) The Crust, Treatise on Geochemistry vol 3. Elsevier, Amsterdam, pp 659
  53. Sawatari H, Toda T, Saizuka T, Kimata C, Itoh A, Haraguchi H (1995) Multielement determination of rare earth elements in coastal seawater by inductively coupled plasma mass spectrometry after preconcentration using chelating resin. Bull Chem Soc Jpn 68:3065-3070 https://doi.org/10.1246/bcsj.68.3065
  54. Shabani MB, Akagi T, Masuda A (1992) Preconcentration of trace rare-earth elements in seawater by complexation with bis (2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Anal Chem 64:737-743 https://doi.org/10.1021/ac00031a008
  55. Sholkovitz ER (1988) Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea; reinterpretation of terrigenous input patterns to the oceans. Am J Sci 288:236-281 https://doi.org/10.2475/ajs.288.3.236
  56. Smith C, Liu XM (2018) Spatial and temporal distribution of rare earth elements in the Neuse River, North Carolina. Chem Geol 488:34-43 https://doi.org/10.1016/j.chemgeo.2018.04.003
  57. Song H, Shin WJ, Ryu JS, Shin HS, Chung H, Lee KS (2017) Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere 172:155-165 https://doi.org/10.1016/j.chemosphere.2016.12.135
  58. Stack JP, Ramsden RT, Antoun NM, Lye RH, Isherwood I, Jenkins JPR (1988) Magnetic resonance imaging of acoustic neuromas: the role of gadolinium-DTPA. Brit J Radiol 61:800-805 https://doi.org/10.1259/0007-1285-61-729-800
  59. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Boston, 312 p
  60. Thakral C, Alhariri J, Abraham JL (2007) Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications. Contrast Media Mol I 2:199-205 https://doi.org/10.1002/cmmi.146
  61. Uggeri F, Aime S, Anelli PL, Botta M, Brocchetta M, de Haeen C, Ermondi G, Grandi M, Paoli P (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln (III) complexes (Ln = Gd, La, Lu). X-ray structure of disodium (TPS-9-145337286-CS)-[4-carboxy-5, 8, 11-tris (carboxymethyl)-1-phenyl-2-oxa-5, 8, 11-triazatridecan-13-oato (5-)] gadolinate (2-) in a mixture with its enantiomer. Inorg Chem 34:633-643 https://doi.org/10.1021/ic00107a017
  62. USGS (2014) Rare earth statistics. United States Geological Survey, http://minerals.usgs.gov/minerals/pubs/historicalstatistics/ Accessed 1 Apr 20
  63. Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ Sci Tech 39:6923-6929 https://doi.org/10.1021/es048456u
  64. White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd (DTPA-BMA)(Omniscan) versus Gd(HP-DO3A)(ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 41:272-278 https://doi.org/10.1097/01.rli.0000186569.32408.95
  65. Zhanheng C (2011) Global rare earth resources and scenarios of future rare earth industry. J Rare Earth 29:1-6 https://doi.org/10.1016/S1002-0721(10)60401-2
  66. Zhu Y, Hoshino M, Yamada HA, Itoh A, Haraguchi H (2004) Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya City. Bull Chem Soc Jpn 77:1835-1842 https://doi.org/10.1246/bcsj.77.1835