DOI QR코드

DOI QR Code

근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver

  • Yang, Jaehoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Nam, Jaehyun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kang, Sanghun (Aerospace System Engineering, Sejong University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2020.10.05
  • 심사 : 2021.10.26
  • 발행 : 2021.11.01

초록

본 연구에서는 스크램제트 제어모델 정립을 위한 1차원 연소기 해석 솔버가 구축되었다. 유체에 대한 지배방정식 및 아레니우스 식 기반의 연소모델, 연료분사모델이 솔버 내에 구현되었으며, 해석이 수행되었다. 솔버의 검증을 위하여 0차원 점화지연 문제 및 1차원 스크램제트 연소해석 문제가 도입되었으며, 현 솔버가 선행 문헌의 결과들을 성공적으로 재현해 내고 있음을 확인하였다. 이어서 아음속 조건에서의 해석을 위한 램제트 해석 알고리즘이 구축되었으며, 열질식 위치를 통해 램제트 조건에서 연소기 입구 마하수를 확정하는 해석이 수행되었다. 램조건에서 PCST (precombustion shock train) 해석을 위한 모델이 도입되었으며, 천이구간 해석을 위한 알고리즘이 도입되었다. 또한 코드 내 램모드 해석의 적절성을 판단하기 위해 격리부 내 의사충격파 길이를 통해 불시동 발생 여부가 분석되었다.

In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

키워드

과제정보

본 연구는 스크램제트 복합추진시스템 특화연구실과제(과제코드: 16-106-501-035)의 지원을 받아 수행하였으며, 이에 감사드립니다.

참고문헌

  1. Berglund, M. and Fureby, C., "LES of Supersonic Combustion in a Scramjet Engine Model," Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2497~2504. https://doi.org/10.1016/j.proci.2006.07.074
  2. Chavez, F. R. and Schmidt, D. K., "Analytical Aeropropulsive/Aeroelastic Hypersonic-Vehicle Model with Dynamic Analysis," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, 1994, pp. 1308~1319. https://doi.org/10.2514/3.21349
  3. Bolender, M. A. and Doman, D. B., "Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle," Journal of Spacecraft and Rockets, Vol. 44, No. 2, 2007, pp. 374~387. https://doi.org/10.2514/1.23370
  4. Torrez, S. M., Scholten, N. A., Micka, D. J. and Driscoll, J. F., "A Scramjet Engine Model Including Effects of Precombustion Shocks and Dissociation," 44th AIAA Joint Propulsion Conference & Exhibit, July, 2008, pp. 1~22
  5. Birzer, C. and Doolan, C. J., "Quasi-One-Dimensional Model of Hydrogen Fueled Scramjet Combustors," Journal of Propulsion and Power, Vol. 25, No. 6, 2009, pp. 1220~1225. https://doi.org/10.2514/1.43716
  6. Choi, J. H., Park, I. S., Gil, H. Y. and Hwang, K. Y., "Analysis of Dual Combustion Ramjet Using Quasi 1D Model," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 6, 2013, pp. 81~88. https://doi.org/10.6108/KSPE.2013.17.6.081
  7. Kim, S. K., Seo, B. G., Kim S. J., Sung, H. G., Byen, J. R. and Yoon, H. G., "Performance Design Techniques for Scramjet Engines with Finite-rate Chemistry Combustion Models," 34th Korean Society of Propulsion Engineers Spring Conference, May, 2010, pp. 401~405.
  8. Jachimowski, C. J., "An Analytical Study of the Hydrogen-Air Reaction Mechanism With Application to Scramjet Combustion," NASA technical paper 2791, 1988, p. 15
  9. Torrez, S. M., Dalle, D. J. and Driscoll, J. F., "New Method for Computing Performance of Choked Reacting Flows and Ram-to-Scram Transition," Journal of Propulsion and Power, Vol. 29, No. 2, 2013, pp. 433~445. https://doi.org/10.2514/1.B34496
  10. Le, D. B., Goyne, C. P. and Krauss, R. H., "Experimental Study of a Dual-Mode Scramjet Isolator," Journal of Propulsion and Power, Vol. 24, No. 5, 2008, pp. 1050~1057. https://doi.org/10.2514/1.32591
  11. Heiser, W. H., Pratt, D. T., Daley, D. H. and Mehta, U. B., "Hypersonic Airbreathing Propulsion," American Instiute of Aeronautics and Astronautics, 1 st Ed. Washington DC, 1994, pp. 342~346.
  12. Saxena, P. and Williams, F. A., "Testing a Small Detailed Chemical-Kinetic Mechanism for the Combustion of Hydrogen and Carbon Monoxide," Combustion and Flame, Vol. 146, No. 1-2, 2006, pp. 316~323. https://doi.org/10.1016/j.combustflame.2005.10.004
  13. Pandey, K. M. and Sivasakthivel, T., "Recent Advance in Scramjet Fuel Injection - A Review," International Journal of Chemical Engineering and Applications, Vol. 1, No. 4, 2010, pp. 294~301. https://doi.org/10.7763/IJCEA.2010.V1.52
  14. Kee, R. J., Rupley, F. M., Meeks, E. and Miller, J. M., "CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics," SANDIA REPORT, 1996, pp. 21~22.
  15. Wakelyn, N. T. and McLain, A. G., "Polynomial Coefficient of Thermochemical Data for the C-H-O-N System," NASA Technical memorandum, 1975, pp. 14~28.
  16. Lee, J. W. and Kang, S. H., "Design Improvement and Performance Evaluation of 2D Scramjet Inlet," 54th Korean Society of Propulsion Engineers Spring Conference, July, 2020, pp. 53~58.
  17. Ikui. T., Matsuo, K. and Nagai, M., "The Mechanism of Pseudo-Shock Waves," Bulletin of JSME, Vol. 17, No. 108, 1974, pp. 731~739. https://doi.org/10.1299/jsme1958.17.731