DOI QR코드

DOI QR Code

Attraction and Repellent Behaviors of Culicoides Biting Midges toward Cow Dung, Carbon Dioxide, and Essential Oils

  • Yang, Daram (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University) ;
  • Yang, Myeon-Sik (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University) ;
  • Kim, Bumseok (College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University)
  • Received : 2021.04.08
  • Accepted : 2021.09.29
  • Published : 2021.10.31

Abstract

Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous arthropod vectors that transmit epizootic arthropod-borne viruses (arboviruses). Arboviruses are recognized as causes of pregnancy loss, encephalomyelitis, and congenital malformations in ruminants. Therefore, continuous monitoring and control of Culicoides, which causes significant damage to industrial animals are necessary. We performed attraction and repellent tests in Culicoides using various essential oils, cow dung, and carbon dioxide (CO2). Culicoides tended to move more to cow dung (60.8%, P<0.0001) and CO2 (63.8%, P<0.01). To the essential oils as repellents, 26.1% (P<0.0001), 18.7% (P<0.001), and 25.5% (P<0.01) of the Culicoides moved to the lavender, lemongrass, and eucalyptus chamber, respectively. The Culicoides that moved to the 3 essential oils chambers showed markedly low activity. Collectively, it was showed that Culicoides tended to be attractive to cow dung and CO2, and repellent from the 3 essential oils.

Keywords

Acknowledgement

This work was supported by the Co-operative Research Program for Agriculture, Science and Technology Development (PJ011978072017) in the Rural Development Administration, Republic of Korea and was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A03033084).

References

  1. Mellor PS, Boorman J, Baylis M. Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol 2000; 45: 307-340. https://doi.org/10.1146/annurev.ento.45.1.307
  2. Venegas P, Perez N, Zapata S, Mosquera JD, Augot D, Rojo-Alvarez JL, Benitez D. An approach to automatic classification of Culicoides species by learning the wing morphology. PLoS One 2020; 15: e0241798. https://doi.org/10.1371/journal.pone.0241798
  3. Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of bluetongue virus in northern Europe. Trends Microbiol 2009; 17: 172-178. https://doi.org/10.1016/j.tim.2009.01.001
  4. Elbers AR, Meiswinkel R, van Weezep E, van Oldruitenborgh-Oosterbaan MMS, Kooi EA. Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerg Infect Dis 2013; 19: 106. https://doi.org/10.3201/eid1901.121054
  5. Parsonson I, Della-Porta A, Snowdon W. Congenital abnormalities in newborn lambs after infection of pregnant sheep with Akabane virus. Infect Immun 1977; 15: 254-262. https://doi.org/10.1128/iai.15.1.254-262.1977
  6. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316: 1718-1723. https://doi.org/10.1126/science.1138878
  7. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GR, Golding N, Hay SI. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 2015; 4: e08347 https://doi.org/10.7554/eLife.08347
  8. Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 1998; 95: 3748-3751. https://doi.org/10.1073/pnas.95.7.3748
  9. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 2003; 89: 99-102. https://doi.org/10.1016/s0960-8524(03)00008-7
  10. Gillij Y, Gleiser R, Zygadlo J. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 2008; 99: 2507-2515. https://doi.org/10.1016/j.biortech.2007.04.066
  11. Geier M, Bosch OJ, Boeckh J. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 1999; 24: 647-653. https://doi.org/10.1093/chemse/24.6.647
  12. Majeed S, Hill SR, Ignell R. Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. J Exp Biol 2014; 217: 598-604. https://doi.org/10.1242/jeb.092718
  13. Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Rammal S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 2002;58:491-495 https://doi.org/10.1002/ps.486
  14. Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 2005; 96: 1749-1757. https://doi.org/10.1016/j.biortech.2005.01.007
  15. Yang D, Yang MS, Rhim H, Han JI, Oem JK, Kim YH, Lee KK, Lim CW, Kim B. Analysis of five arboviruses and Culicoides distribution on cattle farms in Jeollabuk-do, Korea. Korean J Parasitol 2018; 56: 477-485. https://doi.org/10.3347/kjp.2018.56.5.477
  16. Magnarelli L. Relative abundance and parity of mosquitoes collected in dry-ice baited and unbaited CDC miniature light traps. Mosq News 1975; 35: 350-353. https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V35_N3_P350-353.pdf
  17. Kim B, Yang D, Sung JJ, Shim KS, inventors; Jeonbuk National University, Assignee. Apparatus for examining the preference or repulsion tendency of mosquito on test material. Korean patent 10-2141006. 2018 Dec 10. 1-10 (in Korean). https://doi.org/10.8080/1020180158153
  18. Cho HC, Chong CS. Notes on biting midges of the Genus Culicoides from South Korea-with special reference to unrecorded species and distribution. Korean J Parasitol 1974; 12: 45-75. http://doi.org/10.3347/kjp.1974.12.1.45
  19. Newhouse VF, Chamberlain R, Johnston JG, Sudia WD. Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosq News 1966; 26: 30-35 https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V26_N1_P030-035.pdf
  20. Shirai Y, Kamimura K, Seki T, Morohashi M. L-lactic acid as a mosquito (Diptera: Culicidae) repellent on human and mouse skin. J Med Entomol 2001; 38: 51-54. https://doi.org/10.1603/0022-2585-38.1.51
  21. Rutledge LC, Gupta RK, Wirtz RA, Buescher MD. Evaluation of the laboratory mouse model for screening topical mosquito repellents. J Am Mosq Control Assoc 1994; 10: 565-571. https://core.ac.uk/download/pdf/21597505.pdf
  22. Logan JG, Stanczyk NM, Hassanali A, Kemei J, Santana AE, Ribeiro KA, Pickett JA, Mordue AJ. Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 2010; 9: 239. https://doi.org/10.1186/1475-2875-9-239
  23. Koren G, Matsui D, Bailey B. DEET-based insect repellents: safety implications for children and pregnant and lactating women. CMAJ 2003; 169: 209-212. https://www.cmaj.ca/content/cmaj/169/3/209.full.pdf
  24. Weeks JA, Guiney PD, Nikiforov AI. Assessment of the environmental fate and ecotoxicity of N, N-diethyl-m-toluamide (DEET). Integr Environ Assess Manag 2012; 8: 120-134. https://doi.org/10.1002/ieam.1246
  25. Jaenson TGT, Garboui S, PalssonK. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J Med Entomol 2006; 43: 731-736. https://doi.org/10.1093/jmedent/43.4.731
  26. Chattopadhyay P, Dhiman S, Borah S, Rabha B, Chaurasia AK, Veer V. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Trop 2015; 147: 45-53. https://doi.org/10.1016/j.actatropica.2015.03.027
  27. Semmler M, Abdel-Ghaffar F, Schmidt J, Mehlhorn H. Evaluation of biological and chemical insect repellents and their potential adverse effects. Parasitol Res 2014; 113: 185-188. https://doi.org/10.1007/s00436-013-3641-7