DOI QR코드

DOI QR Code

Fabrication of Organic Solvent Resistant Polyketone Hollow Fiber Membranes

유기용매 저항성 Polyketone 중공사 분리막의 제조

  • Park, Yeji (MEMBRARE Co., Ltd.) ;
  • Jang, Wongi (Department of Chemical Engineering, Keimyung University) ;
  • Choi, Jinwon (Department of Chemical Engineering, Keimyung University) ;
  • Woo, Yunha (MEMBRARE Co., Ltd.) ;
  • Hou, Jian (Department of Chemical Engineering, Keimyung University) ;
  • Jeon, Sungil (MEMBRARE Co., Ltd.) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • Received : 2021.10.27
  • Accepted : 2021.10.27
  • Published : 2021.10.31

Abstract

Organic solvent resistant hollow fiber membranes were fabricated via a thermally induced phase separation (TIPS) method using Polyketone polymer, a material with excellent resistance to organic solvents. The PEG300, DMSO2 and Glycerine called the "green solvents" were used as diluents for TIPS method. The spherulite structure was formed with DMSO2 by S-L phase separation behavior whereas the bicontinuous structures were formed with PEG300 and Glycerine, respectively. The morphology of the PK hollow fiber membranes was investigated using SEM. The pure water permeability and the durability test were conducted to understand the permeation properties of PK hollow fiber membranes. The tensile strength test was conducted for the property of mechanical strength. In this study, the fabrication of PK hollow fiber membranes with various diluents was discussed to understand the correlation between diluent and polymer in detail.

본 연구에서는 유기용매에 저항성이 뛰어난 소재인 polyketone 고분자를 사용하여 열유도 상분리법(TIPS)으로 유기용매 저항성 중공사 분리막을 제조하였다. 희석제는 green solvent로 알려진 PEG300, DMSO2, glycerine을 사용하였으며, 이때 사용된 diluent에 따라 나타나는 구정형 구조를 가지는 고-액 상분리와 bicontinuous한 구조를 가지는 액-액 상분리를 관찰하였다. 전반적인 분리막의 특성은 SEM, 수투과도, 기계적 강도, 내화학실험을 사용하여 고찰하였으며, 본 연구에서는 다양한 희석제가 적용된 polyketone 중공사 분리막의 제조와 그 상호관계에 대해 심도 있게 연구하였다.

Keywords

References

  1. I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, "Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments", J. Membr. Sci., 457, 62-72 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
  2. S. Jeon, A. Nishitani, L. Cheng, L-F. Fang, N. Kato, T. Shintani, and H. Matsuyama, "One-step fabrication of polyamide 6 hollow fibre membrane using non-toxic diluents for organic solvent nanofiltration", RSC Adv., 8, 19879 (2018). https://doi.org/10.1039/C8RA03328E
  3. S. H. Kim, K. S. Im, J. H. Kim, H. C. Koh, and S. Y. Nam, "Preparation and characterization of nanofiltration membrane for recycling alcoholic organic solvent", Membr. J., 31, 228-240 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.228
  4. J. Aburabie, P. Neelakanda, M. Karunakaran, and K-V. Peinemann, "Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)", React. and Funct. Polym., 86, 225-232 (2015). https://doi.org/10.1016/j.reactfunctpolym.2014.09.011
  5. M. H. D. A. Farahani, and T-S. Chung, "Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries", Chem. Eng. J., 345, 174-185 (2018). https://doi.org/10.1016/j.cej.2018.03.153
  6. J. Hou, J. Yun, S. Jeon, K. Y. Chung, and H. Byun, "Preparation and fundamental characterization of EVOH hollow fiber membranes via thermally induced phase separation (TIPS)", Membr. J., 28, 395-405 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.395
  7. G. B. A. Lim, S. S. Kim, Q. Ye, Y. F. Wang, and D. R. Lloyd, "Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure", J. Membr. Sci., 64, 31-40 (1991) https://doi.org/10.1016/0376-7388(91)80075-H
  8. H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, and N. Kubota, "Preparation of polyethylene hollow fiber membrane via thermally induced phase separation", J. Membr. Sci., 223, 119-126 (2003). https://doi.org/10.1016/S0376-7388(03)00314-4
  9. S. Rajabzadeh, D. Ogawa, Y. Ohmukai, Z. Zhou, T. Ishigami, and H. Matsuyama, "Preparation of a PVDF hollow fiber blend membrane via thermally induced phase separation (TIPS) method using new synthesized zwitterionic copolymer", Desalination and Water Treat., 54, 2911-2919 (2015). https://doi.org/10.1080/19443994.2014.912159
  10. H. Matsuyama, K. Ohga, T. Maki, M. Tearamoto, and S. Nakatsuka, "Porous cellulose acetate membrane prepared by thermally induced phase separation", J. Appl. Polym. Sci., 89, 3951-3955 (2003). https://doi.org/10.1002/app.12785
  11. X. Fu, T. Maruyama, T. Sotani, and H. Matsuyama, "Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes", J. Membr. Sci., 320, 483-491 (2008). https://doi.org/10.1016/j.memsci.2008.04.027
  12. C. Liu, R. Takagi, T. Shintani, L. Cheng, K-L. Tung, and H. Matsuyama, "Organic liquid mixture separation using an aliphatic polyketone-based organic solvent reverse osmosis (OSRO) membrane", ACS Appl. Mater. Interfaces, 12, 7586-7594 (2020). https://doi.org/10.1021/acsami.9b21519
  13. M. K. Jeong and S. Y. Nam, "Preparation and characterization of organic solvent-resistant polybenzimidazole membranes", Appl. Chem. Eng., 28, 420-426 (2017). https://doi.org/10.14478/ACE.2017.1015
  14. L. Cheng, A. R. Shaikh, L-F. Fang, S. Jeon, C-J. Liu, L. Zhang, H-C. Wu, D-M. Wang, and H. Matsuyama, "Fouling-resistant and self-cleaning aliphatic polyketone membrane for sustainable oil-water emulsion separation", ACS Appl. Mater. Interfaces, 10, 44880-44889 (2018). https://doi.org/10.1021/acsami.8b17192
  15. Y. C. Xu, X. Q. Cheng, J. Long, and L. Shao, "A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations", J. Membr. Sci., 497, 77-89 (2016). https://doi.org/10.1016/j.memsci.2015.09.029
  16. H. Karhanechi, S. Rajabzadeh, E. D. Nicolo, H. Usuda, A. R. Shaikh, and H. Matsuyama, "Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation (TIPS)", Polym., 97, 515-524 (2016). https://doi.org/10.1016/j.polymer.2016.05.067
  17. D. R. Lloyd, K. E. Kinzer, and H. S. Tseng, "Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separ-ation", J. Membr. Sci., 52, 239-261 (1990). https://doi.org/10.1016/S0376-7388(00)85130-3
  18. D. R. Lloyd, S. S. Kim, and K. E. Kinzer, "Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation", J. Membr. Sci., 64, 1-11 (1991). https://doi.org/10.1016/0376-7388(91)80073-F
  19. C. Fang, S. Rajabzadeh, W. Liu, H-C. Wu, N. Kato, Y. Sun, S. Jeon, and H. Matsuyama, "Effect of mixed diluents during thermally induced phase separation process on structures and performances of hollow fiber membranes prepared using triple-orifice spinneret", J. Membr. Sci., 596, 117715 (2020). https://doi.org/10.1016/j.memsci.2019.117715
  20. S. S. Kim and D. R. Lloyd, "Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes", J. Membr. Sci., 64, 13-29 (1991). https://doi.org/10.1016/0376-7388(91)80074-G
  21. M. Park, J. Kim, M. Jang, and S. S. Kim, "Preparation of PVDF hollow fiber membrane via TIPS (Thermally Induced Phase Separation) and stretching", Membr. J., 24, 158-166 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.158
  22. S. Jeon, H. Karkhanechi, L-F. Fang, L. Cheng, T. Ono, R. Nakamura, and H. Matsuyama, "Novel preparation and fundamental characterization of polyamide 6 self-supporting hollow fiber membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 546, 1-14 (2018). https://doi.org/10.1016/j.memsci.2017.10.008