Acknowledgement
본 연구는 2020학년도 상명대학교 교내연구비를 지원받아 수행하였음.
References
- C. Ponce de Leon, A. Frias-Ferrer, J. GonzalezGarcia, D. A. Szanto, and F. C. Walsh, "Redox flow cells for energy conversion", J. Power Sources, 160, 716 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
- V. Fernao Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, and J. F. Martins, "Power converter interfaces for electrochemical energy storage systems - A review", Energy Convers. Manag., 86, 453 (2014). https://doi.org/10.1016/j.enconman.2014.05.003
- M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Haijmolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, R55 (2011). https://doi.org/10.1149/1.3599565
- A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: a review", J. Appl. Electrochem., 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
- J. P. Barton and D. G. Infield, "Energy storage and its use with intermittent renewable energy", IEEE Trans. Energy Conversion, 19, 441 (2004). https://doi.org/10.1109/TEC.2003.822305
- H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19, 291 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
- G-J. Hwang, A-S. Kang, and H. Ohya, "Review of the redox-flow secondary battery", Chem. Industry and Technology, 16, 455 (1998).
- A. A. Shah, H. Al-Fetlawi, and F. C. Walsh, "Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery", Electrochim. Acta, 55, 1125 (2010). https://doi.org/10.1016/j.electacta.2009.10.022
- X. Ma, H. Zhang, and F. Xing, "A three-dimensional model for negative half cell of the vanadium redox flow battery", Electrochim. Acta, 58, 238 (2011). https://doi.org/10.1016/j.electacta.2011.09.042
- M. Rychick and M. Skyllas-Kazacos, "Characteristics of a new all-vanadium redox flow battery", J. Power Sources, 22, 59 (1988). https://doi.org/10.1016/0378-7753(88)80005-3
- P. Alotto, M. Guarnieri, and F. Moro, "Redox flow batteries for the storage of renewable energy: A review", Renew. Sustain. Energy Rev., 29, 325 (2014). https://doi.org/10.1016/j.rser.2013.08.001
- C.-H. Bae, E. P. L Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002). https://doi.org/10.1016/S0013-4686(02)00649-7
- M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 27, 219 (1989). https://doi.org/10.1016/0378-7753(89)80037-0
- J. Noack, N. Roznyatovskaya, T. Herr, and P. Fischer, "The chemistry of redox-flow batteries", Angew. Chem. Int. Ed., 54, 9775 (2015).
- S. C. Chieng, M. Kazacos, and M. Skyllas-Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery applications", J. Power Sources, 39, 11 (1992). https://doi.org/10.1016/0378-7753(92)85002-R
- T. Mohammadi, M. Skyllas-Kazacos, "Modification of anion-exchange membranes for vanadium redox flow battery applications", J. Power Sources, 63, 179 (1996). https://doi.org/10.1016/S0378-7753(96)02463-9
- T. Mohammadi, M. Skyllas-Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
- D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013). https://doi.org/10.1021/am401858r
- P. Costamagna, S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects", J. Power Sources, 102, 242 (2001). https://doi.org/10.1016/S0378-7753(01)00807-2
- X. Li, X. Hao, D. Xu, G. Zhang, S. Zhong, H. Na, and D. Wang, "Fabrication of sulfonated poly (ether ether ketone ketone) membranes with high proton conductivity", J. Membr. Sci., 281, 1 (2006). https://doi.org/10.1016/j.memsci.2006.06.002
- X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao, "Electrochemical properties of sulfonated PEEK used for ion exchange membranes", J. Membr. Sci., 254, 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051
- X. Li, G. Zhang, D. Xu, C. Zhao, and H. Na, "Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes", J. Power Sources, 165, 701 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.011
- M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. Mc Grath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
- B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
- S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013). https://doi.org/10.1016/j.memsci.2012.11.027
- W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, "Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 208, 421 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
- X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
- K. Naoi, E. Iwama, N. Ogihara, Y. Nakamura, H. Segawa, and Y. Ino, "Nonflammable hydrofluoroether for lithium-ion batteries: Enhanced rate capability, cyclability, and low-temperature performance", J. Electrochem. Soc., 156, A272 (2009). https://doi.org/10.1149/1.3073552
- T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries", J. Electrochem. Soc., 157, A707 (2010). https://doi.org/10.1149/1.3377084
- N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries", J. Power Sources, 221, 6, (2013). https://doi.org/10.1016/j.jpowsour.2012.07.121
- X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, "Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery", Sci. Adv., 4, 1 (2018).
- L. Gomez-Coma, V. M. Ortiz-Martinez, J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019). https://doi.org/10.1016/j.memsci.2019.117385
- D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129
- G. Ruppert, R. Bauer, and G. Heisler, "The photo-Fenton reaction - an effective photochemical wastewater treatment process", J. Photochem. Photobiol. A: Chem., 73, 75 (1993). https://doi.org/10.1016/1010-6030(93)80035-8
- Z. Palaty, and H. Bendova, "Numerical effort analysis of mass transfer measurements in batch dialyzer", Desalin. Water Treat. 26, 215 (2011). https://doi.org/10.5004/dwt.2011.1492
- D-H. Kim, Y-E. Choi, J-S. Park, and M-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta, 295, 164 (2019). https://doi.org/10.1016/j.electacta.2018.10.124
- Z. Wang, J. Parrondo, S. Sankarasubramanian, K. Bhattacharyya, M. Ghosh, and V. Ramani, "Alkaline stability of pure aliphatic-based anion exchange membranes containing cycloaliphatic quaternary ammonium cations", J. Electrochem. Soc., 167, 124504 (2020). https://doi.org/10.1149/1945-7111/abac29
- S. Lee, H. Lee, T.-H. Yang, B. Bae, N. A. T. Tran, Y. Cho, N. Jung, and D. Shin, "Quaternary ammonium-bearing perfluorinated polymers for anion exchange membrane applications", Membranes, 10, 306 (2020). https://doi.org/10.3390/membranes10110306
- S. Ghosh, K. Dhole, M. K. Tripathy, R. Kumar, and R. S. Sharma, "FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins", J. Radioanal Nucl. Chem., 304 917 (2015). https://doi.org/10.1007/s10967-014-3906-3
- D. Chen and M. A. Hickner, "Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes", ACS Appl. Mater. Interfaces, 4, 5775 (2012). https://doi.org/10.1021/am301557w
- V. Herman, H. Takacs, F. Duclairoir, O. Renault, J. H. Tortaic, and B. Viala, "Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization", RSC Adv., 5, 51371 (2015). https://doi.org/10.1039/C5RA06847A
- R. Tang, Y. Zhang, Y. Zhang, Z. Yu, "Synthesis and characterization of chitosan based dye containing quaternary ammonium group", Carbohydrate Polymers, 139, 191 (2016). https://doi.org/10.1016/j.carbpol.2015.12.047
- H. Wang, Y. Wen, H. Peng, C. Zheng, Y. Li, S. Wang, S. Sun, X. Xie, and X. Zhou, "Grafting polytetrafluoroethylene micropowder via in situ electron beam irradiation-induced polymerization", Polymers, 10, 503 (2018). https://doi.org/10.3390/polym10050503