One-stop Platform for Verification of ICT-based environmental monitoring sensor data

ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼

  • 채민아 (숭실대학교 AI 데이터사업단) ;
  • 조재혁 (숭실대학교 전자정보공학부)
  • Received : 2020.12.22
  • Accepted : 2021.03.16
  • Published : 2021.03.30

Abstract

Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

기존 환경측정기기는 전자파 및 친환경 제품 인증, 내구성 시험 위주이며, 센서 신뢰성 검증 및 측정 데이터에 대한 검증은 형식 승인 및 등록, 인수시험, 초기교정, 주기시험 등을 통해 센서 성능평가 위주로 수행된다. 본 플랫폼은 각 타겟 센서별 성능평가 뿐만 아니라 센서의 데이터 신뢰성에 대한 검증체계 지원 ICT 기반 환경 모니터링 센서 신뢰성 검증 체계를 구축하였다. 환경 정보에 대한 센서 데이터를 수집할 센서보드를 제작하였고 센서 및 데이터 신뢰성 평가 및 검증 서비스 체계를 규격화 하였다. 또한, ICT 기반 센서 데이터 신뢰성 평가 및 검증을 위해 LoRa 통신을 이용한 센서 데이터 플랫폼 모니터링 프로토타입을 제작하였고 이를 스마트 시티 등에 실증 테스트하였다. 해당 시스템을 통해 받은 데이터 분석을 위해 머신러닝을 이용하여 최적화 알고리즘 개발하였다. 이를 통해 신뢰성 검증을 위한 센서 빅데이터 분석시스템을 구축하였고 통합 평가 및 검증 시스템의 기반을 마련하였다.

Keywords

Acknowledgement

This research was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MIST) (NO.2019-0-00135, Implementation of verification platform for ICT based environmental monitoring sensor)

References

  1. D.-U. Kim, "The Technical Trend of IoT for Electric Power Industry," KEPCO Journal on Electric Power and Energy, vol. 2, no. 4, pp. 491-497, 2016. https://doi.org/10.18770/KEPCO.2016.02.04.491
  2. M. Stonebraker and U. C etintemel, "" One size fits all" an idea whose time has come and gone," in Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker, 2018, pp. 441-462.
  3. https://www.law.go.kr/법령/실내공기질관리법
  4. https://www.law.go.kr/법령/악취방지법
  5. G. Buonanno, M. Dell'Isola, L. Stabile, and A. Viola, "Critical aspects of the uncertainty budget in the gravimetric PM measurements," Measurement, vol. 44, no. 1, pp. 139-147, 2011. https://doi.org/10.1016/j.measurement.2010.09.037
  6. Lavric, Alexandru, and Valentin Popa. "Internet of things and LoRa™ low-power wide-area networks: a survey." 2017 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2017.
  7. Lam, Ka-Ho, Chi-Chung Cheung, and Wah-Ching Lee. "Rssi-based lora localization systems for large-scale indoor and outdoor environments." IEEE Transactions on Vehicular Technology 68.12 11778-11791, 2019. https://doi.org/10.1109/tvt.2019.2940272
  8. Geron, Aurelien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, 2019.