DOI QR코드

DOI QR Code

Optimization of binary and ternary concrete composed of fly ash and ultra-fine slag using GRA

  • Agrawal, Vinay Mohan (Civil Engineering Department, Goa College of Engineering, Goa University) ;
  • Savoika, Purnanand P. (Civil Engineering Department, Goa College of Engineering, Goa University)
  • Received : 2021.01.13
  • Accepted : 2021.08.06
  • Published : 2021.10.25

Abstract

The paper presents the study of concrete made with supplementary cementitious materials such as Fly Ash (FA) and Ultra Fine Slag (UFS). Ordinary Portland Cement (OPC) is partially replaced with 20%, 30%, and 40% of FA by weight of cementitious content in three FA binary combinations. OPC is further replaced with 5%, 10%, 15%, and 20% of UFS to all three binary combinations forming twelve ternary combinations. The paper assesses workability, strength behaviour, chloride migration, water permeability, and cost aspect of all mixes. The results indicate that the use of FA binary combinations improves the workability but mechanical and durability properties are compromised. In case of FA-UFS ternary combinations, the compressive, flexural, and split tensile strengths have been observed to improve up to 36%, 13%, and 22%, respectively. Chloride migration and water permeability of ternary mix improve by 92% and 94% compared to reference concrete. An optimization technique using Taguchi-grey relational analysis (GRA) suggested that a ternary combination with 55% OPC, 30% FA, and 15% UFS qualify as an optimum mix combination.

Keywords

Acknowledgement

Authors gratefully acknowledge ALCON R&D Lab, Goa, India, for extending support towards testing facilities and materials. The authors would also like to thank National Centre for Polar and Ocean Research, Goa, India, for SEM observations.

References

  1. Agarwal, S.K. (2006), "Pozzolanic activity of various siliceous materials", Cement Concrete Res., 36, 1735-1739. https://doi.org/10.1016/j.cemconres.2004.06.025.
  2. Aprianti, S.E. (2017), "A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production-A review part II", J. Clean. Prod., 142, 4178-4194. https://doi.org/10.1016/j.jclepro.2015.12.115.
  3. Ashish, D.K., Singh, B. and Verma, S.K. (2016), "The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete", Adv. Concrete Constr., 4(2), 107-121. http://doi.org/10.12989/acc.2016.4.2.107.
  4. BIS 516 (2004), Method of Tests for Strength of Concrete, New Delhi, India
  5. BIS 1199 (2004), Methods of Sampling and Analysis of Concrete, New Delhi, India
  6. BIS 5816 (2004), Method of Test Splitting Tensile Strength of Concrete, New Delhi, India.
  7. Borosnyoi, A. (2016), "Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials", Constr. Build. Mater., 112, 307-324. https://doi.org/10.1016/j.conbuildmat.2016.02.224.
  8. Chang, C.Y., Huang, R., Lee, P.C. and Weng, T.L. (2011), "Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures", Cement Concrete Compos., 33(10), 1038-1049. https://doi.org/10.1016/j.cemconcomp.2011.06.005.
  9. Cheah, C.B., Samsudin, M.H. Ramli, M. Part, W.K. and Tan, L.E. (2017), "The use of high calcium wood ash in the preparation of ground granulated blast furnace slag and pulverized fly ash geopolymers: A complete microstructural and mechanical characterization", J. Clean. Prod., 156, 114-123. https://doi.org/10.1016/j.jclepro.2017.04.026.
  10. Chindaprasirt, P. Rukzon, S. and Sirivivatnanon, V. (2008), "Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash", Constr. Build. Mater., 22(5), 932-938. https://doi.org/10.1016/j.conbuildmat.2006.12.001.
  11. Choi, S.J. Lee, S.S. and Monteiro, P.J.M. (2012), "Effect of fly ash fineness on temperature rise, setting, and strength development of mortar", J. Mater. Civil Eng., 24(5), 499-505. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000411.
  12. Chore, H.S. and Joshi, M.P. (2015), "Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials", Adv. Concrete Constr., 3(3), 223-236. http://doi.org/10.12989/acc.2015.3.3.223.
  13. Chusilp, N., Jaturapitakkul, C. and Kiattikomol, K. (2009), "Utilization of bagasse ash as a pozzolanic material in concrete", Constr. Build. Mater., 23(11), 3352-3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030.
  14. Coppola, L., Coffetti, D. and Crotti, E. (2018), "Plain and ultrafine fly ashes mortars for environmentally friendly construction materials", Sustain., 10(3), 874-889. https://doi.org/10.3390/su10030874.
  15. Dabrowski, M. Glinicki, M.A. Gibas, K. and Jozwiak-Niedzwiedzka, D. (2016), "Effects of calcareous fly ash in blended cements on chloride ions migration and strength of air entrained concrete", Constr. Build. Mater., 126, 1044-1053. https://doi.org/10.1016/j.conbuildmat.2016.08.115.
  16. Daniel, A.A.S. Pugazhenthi, R. Kumar, R. and Vijayananth, S. (2019), "Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis", Defence Tech., 15(4), 545-556. https://doi.org/10.1016/j.dt.2019.01.001.
  17. Deb, P.S. Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001.
  18. EN 12390-8 (2009), Depth of Penetration of Water Under Pressure, European Standard.
  19. Fang, G. Ho, W.K. Tu, W. and Zhang, M. (2018), "Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater., 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.
  20. Goldman, A. and Bentur, A. (1993), "The influence of microfillers on enhancement of concrete strength", Cement Concrete Res., 23(4), 962-972. https://doi.org/10.1016/0008-8846(93)90050-J.
  21. Guo, Z. Jiang, T. Zhang, J. Kong, X. Chen, C. and Lehman, D.E. (2020), "Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume", Constr. Build. Mater., 231, 117115. https://doi.org/10.1016/j.conbuildmat.2019.117115.
  22. Hannesson, G. Kuder, K. Shogren, R. and Lehman, D. (2012), "The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete", Constr. Build. Mater., 30, 161-168. https://doi.org/10.1016/j.conbuildmat.2011.11.046.
  23. Hemalatha, T. and Ramaswamy, A. (2017), "A review on fly ash characteristics-Towards promoting high volume utilization in developing sustainable concrete", J. Clean. Prod., 147, 546-559. https://doi.org/10.1016/j.jclepro.2017.01.114.
  24. Hosan, A. and Shaikh, F.U.A. (2020), "Influence of nano-CaCO3 addition on the compressive strength and microstructure of high volume slag and high volume slag-fly ash blended pastes", J. Build. Eng., 27, 100929. https://doi.org/10.1016/j.jobe.2019.100929.
  25. Ikotun, B.D. Fanourakis, G.C. and Bhardwaj, M.S. (2017), "The effect of fly ash, β-cyclodextrin and fly ash-β-cyclodextrin composites on concrete workability and strength", Cement Concrete Compos., 78, 1-12. https://doi.org/10.1016/j.cemconcomp.2016.12.008.
  26. Ismail, I. Bernal, S.A. Provis, J.L. Nicolas, S.R. Brice, D.G. Kilcullen, A.R. Hamdan, S. and Deventer, V.J.S.J. (2013), "Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes", Constr. Build. Mater., 48, 1187-1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106.
  27. Jindal, B.B., Jangra, P. and Garg, A. (2020), "Effects of ultra fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete", Mater. Today Proc., 32, 871-877. https://doi.org/10.1016/j.matpr.2020.04.219.
  28. Jeong, Y. Park, H. Jun, Y. Jeong, J.H. and Oh, J.E. (2015), "Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS", Constr. Build. Mater., 95, 96-107. https://doi.org/10.1016/j.conbuildmat.2015.07.158.
  29. Johari, M.M.A. Brooks, J.J., Kabir, S. and Rivard, P. (2011), "Influence of supplementary cementitious materials on engineering properties of high strength concrete", Constr. Build. Mater., 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.
  30. Kuo, Y. Yang, T. and Huang, G.W. (2008), "The use of a grey-based Taguchi method for optimizing multi-response simulation problems", Eng. Optim., 40(6), 517-528. https://doi.org/10.1080/03052150701857645.
  31. Laskar, S.M. and Talukdar, S. (2017), "Development of ultrafine slag-based geopolymer mortar for use as repairing mortar", J. Mater. Civil Eng., 29(5), 04016292. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001824.
  32. Laskar, S.M. and Talukdar, S. (2017), "Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent", Constr. Build. Mater., 154, 176-190. https://doi.org/10.1016/j.conbuildmat.2017.07.187.
  33. Lee, N.K. and Lee, H.K. (2013), "Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature", Constr. Build. Mater., 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107.
  34. Li, J. Wu, Z. Shi, C. Yuan, Q. and Zhang, Z. (2020), "Durability of ultra-high performance concrete-A review", Constr. Build. Mater., 255, 119296. https://doi.org/10.1016/j.conbuildmat.2020.119296.
  35. Li, Q.L. Chen, M.Z. Liu, F. Wu, S.P. and Sang, Y. (2015), "Effect of superfine blast furnace slag powder on properties of cement-based materials", Mater. Res. Innov., 19(1), S1-168. https://doi.org/10.1179/1432891715Z.0000000001397.
  36. Lim, T.Y.D. Teng, S. Bahador, S.D. and Gjorv, O.E. (2016), "Durability of very-high-strength concrete with supplementary cementitious materials for marine environments", ACI Mater. J., 113(1), 95-104. https://doi.org/10.14359/51687981.
  37. Mehta, A. and Siddique, R. (2018), "Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties", J. Clean. Prod., 205, 49-57. https://doi.org/10.1016/j.jclepro.2018.08.313.
  38. Mercy, L.J. Prakash, S. Krishnamoorthy, A. Ramesh, S. and Anand, A.D. (2017), "Multi response optimisation of mechanical properties in self-healing glass fiber reinforced plastic using grey relational analysis", Meas., 110, 344-355. https://doi.org/10.1016/j.measurement.2017.07.013.
  39. Muthadhi, A. and Kothandaraman, S. (2013), "Experimental investigations of performance characteristics of rice husk ash-blended concrete", J. Mater. Civil Eng., 25(8), 1115-1118. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000656.
  40. Narong, O.L.C. Sia, C.K. Yee, S.K. Ong, P. Zainudin, A. Nor, N.H.M. and Hassan, M.F. (2018), "Optimisation of EMI shielding effectiveness: mechanical and physical performance of mortar containing pofa for plaster work using taguchi grey method", Constr. Build. Mater., 176, 509-518. https://doi.org/10.1016/j.conbuildmat.2018.05.025.
  41. Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
  42. Nath, P. and Sarker, P.K. (2017), "Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete", Constr. Build. Mater., 130, 22-31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.
  43. Nguyen, T.B.T. Saengsoy, W. and Tangtermsirikul, S. (2018), "Effect of initial moisture of wet fly ash on the workability and compressive strength of mortar and concrete", Constr. Build. Mater., 183, 408-416. https://doi.org/10.1016/j.conbuildmat.2018.06.192.
  44. Niu, Q. Feng, N. Yang, J. and Zheng, X. (2002), "Effect of superfine slag powder on cement properties", Cement Concrete Res., 32, 615-621. https://doi.org/10.1016/S0008-8846(01)00730-X.
  45. NT-Build 492 (1999), Chloride Migration Coefficient from NonSteady-State Migration Experiments, Nord Test, Finland.
  46. Ozbay, E. Erdemir, M. and Durmus, H.I. (2016), "Utilization and efficiency of ground granulated blast furnace slag on concrete properties-a review", Constr. Build. Mater., 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153.
  47. Papadakis, V.G. (2000), "Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress", Cement Concrete Res., 30(2), 291-299. https://doi.org/10.1016/S0008-8846(99)00249-5.
  48. Parveen, P. Mehta, A. and Saloni, S. (2019), "Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete", Adv. Concrete Constr., 7(4), 231-239. http://doi.org/10.12989/acc.2019.7.4.231.
  49. Prusty, J.K. and Pradhan, B. (2020), "Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete", Constr. Build. Mater., 241, 118049. https://doi.org/10.1016/j.conbuildmat.2020.118049.
  50. Puertas, F. Varga, C. and Alonso, M.M. (2014), "Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution", Cement Concrete Compos., 53, 279-288. https://doi.org/10.1016/j.cemconcomp.2014.07.012.
  51. Rashad, A.M. (2015), "An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures", J. Clean. Prod., 93, 47-55. https://doi.org/10.1016/j.jclepro.2015.01.031.
  52. Rattanachu, P. Tangchirapat, W. and Jaturapitakkul, C. (2019), "Water permeability and sulfate resistance of eco-friendly high-strength concrete composed of ground bagasse ash and recycled concrete aggregate", J. Mater. Civil Eng., 31(6), 04019093. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002740.
  53. Rattanashotinunt, C. Tangchirapat, W. Jaturapitakkul, C. Cheewaket, T. and Chindaprasirt, P. (2018), "Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials", J. Clean. Prod., 172, 1691-1698. https://doi.org/10.1016/j.jclepro.2017.12.044.
  54. Rukzon, S. and Chindaprasirt, P. (2013), "Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials", Int. J. Min. Metall. Mater., 20(8), 808-814. https://doi.org/10.1007/s12613-013-0800-x.
  55. Sengul, O. and Tasdemir, M.A. (2009), "Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag", J. Mater. Civil Eng., 21(9), 494-501. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(494).
  56. Shaikh, F.U.A. and Supit, S.W.M. (2015), "Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA)", Constr. Build. Mater., 82, 192-205. https://doi.org/10.1016/j.conbuildmat.2015.02.068.
  57. Sharmila, P. and Dhinakaran, G. (2016), "Compressive strength, porosity and sorptivity of ultra fine slag based high strength concrete", Constr. Build. Mater., 120, 48-53. https://doi.org/10.1016/j.conbuildmat.2016.05.090.
  58. Sofi, M. Deventer, V.J.S.J. Mendis, P.A. and Lukey, G.C. (2007), "Engineering properties of inorganic polymer concretes (IPCs)", Cement Concrete Res., 37(2), 251-257. https://doi.org/10.1016/j.cemconres.2006.10.008.
  59. Somna, R. Jaturapitakkul, C. and Amde, A.M. (2012), "Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete", Cement Concrete Compos., 34(7), 848-854. https://doi.org/10.1016/j.cemconcomp.2012.03.003.
  60. Teng, S. Lim, T.Y.D. and Divsholi, S.B. (2013), "Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag" Constr. Build. Mater., 40, 875-881. https://doi.org/10.1016/j.conbuildmat.2012.11.052.
  61. Ting, L. Qiang, W. and Shiyu, Z. (2019), "Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes", Powder Tech., 345, 54-63. https://doi.org/10.1016/j.powtec.2018.12.094.
  62. Venu, M. and Rao, G.T.D. (2017), "Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns", Constr. Build. Mater., 151, 28-35. https://doi.org/10.1016/j.conbuildmat.2017.06.065.
  63. Wu, B. and Ye, G. (2017), "Development of porosity of cement paste blended with supplementary cementitious materials after carbonation", Constr. Build. Mater., 145, 52-61. https://doi.org/10.1016/j.conbuildmat.2017.03.176.
  64. Yang, T. Yao, X. and Zhang, Z. (2014), "Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF)", Constr. Build. Mater., 69, 109-115. https://doi.org/10.1016/j.conbuildmat.2014.07.031.
  65. Yu, Z. Ni, C. Tang, M. and Shen, X. (2018), "Relationship between water permeability and pore structure of Portland cement paste blended with fly ash", Constr. Build. Mater., 175, 458-466. https://doi.org/10.1016/j.conbuildmat.2018.04.147.
  66. Zhang, J. Ma, Y. Zheng, J. Hu, J. Fu, J. Zhang, Z. and Wang, H. (2020a), "Chloride diffusion in alkali-activated fly ash/slag concretes: role of slag content, water/binder ratio, alkali content and sand-aggregate ratio", Constr. Build. Mater., 261, 119940. https://doi.org/10.1016/j.conbuildmat.2020.119940.
  67. Zhang, P. Gao, Z. Wang, J. Guo, J. Hu, S. and Ling, Y. (2020b), "Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review", J. Clean. Prod., 270, 122389. https://doi.org/10.1016/j.jclepro.2020.122389.