DOI QR코드

DOI QR Code

Neutron Irradiation Effect of YBa2Cu3O7-y Superconductor

YBa2Cu3O7-y 초전도 벌크의 중성자 조사 효과

  • Lee, Sang Heon (Department of Electronic Engineering, Sunmoon University)
  • Received : 2021.07.09
  • Accepted : 2021.07.29
  • Published : 2021.11.01

Abstract

The electrical characteristics of single-crystal composite superconductors produced by a melting process were studied by neutron irradiation. In order to improve the current characteristics of the YBa2Cu3O7-y superconductor, it is necessary to form an effective flux pinning center inside the superconductor. In this study, an increase in flux pinning was attempted through neutron irradiation onto YBa2Cu3O7-y superconductors. The neutron irradiation was performed at 30 MeV for 500 sec, The electrical properties of the superconductors were measured in a magnetic field of 5 Tesla at 50 K using a magnetic properties measurement system (MPMS). After neutron irradiation, the critical current density of the YBa2Cu3O7-y superconductor in a 1 Tesla magnetic field was 1×105 A/cm2. Once neutrons were irradiated at 30 MeV and 10 μA for 500 sec, the critical current density was observed to increase significantly. When neutrons are irradiated to a superconductor, micro-defects are created in the superconductor, and they act as flux pinning centers that hold the magnetic field generated when an electric current flows.

Keywords

References

  1. D. Behera, T. Mohanty, S. K. Dash, T. Banerjee, D. Kanjilal, and N. C. Mishra, Radiat. Meas., 36, 125 (2003). [DOI: https://doi.org/10.1016/S1350-4487(03)00108-2]
  2. M. K. Marhas, K. Balakrishnan, P. Saravanan, V. Ganesan, T. Srinivasan, D. Kanjilal, G. K. Mehta, M. Vedwyas, S. B. Ogale, S. P. Pai, M.S.R. Rao, R. Pinto, G. M. Rao, S. Senthilnathan, and S. Mohan, Nucl. Instrum. Methods Phys. Res., Sect. B, 156, 21 (1999). [DOI: https://doi.org/10.1016/S0168-583X(99)00270-0]
  3. R. Vlastou, E. N. Gazis, C. T. Papadopoulos, E. Liarocapis, D. Palles, N. Poulakis, S. Kossionides, M. Kokkoris, G. Kaliabakos, W. Assmann, and P. Berbeich, Nucl. Instrum. Methods Phys. Res., Sect. B, 136, 1286 (1998). [DOI: https://doi.org/10.1016/s0168-583x(97)00845-8]
  4. U. Topal, L. Dorosinskii, and H. Sozeri, Phys. C, 407, 49 (2004). [DOI: https://doi.org/10.1016/j.physc.2004.04.009]
  5. U. Topal, L. Dorosinskiia, H. Ozkan, and H. Yavuz, Phys. C, 388, 401 (2003). [DOI: https://doi.org/10.1016/s0921-4534(02)02539-x]
  6. M. E. Amiryar and K. R. Pullen, Appl. Sci., 7, 286 (2017). [DOI: https://doi.org/10.3390/app7030286]
  7. J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K.G.B. Palmer, Y. H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, Supercond. Sci. Technol, 27, 082001 (2014). [DOI:https://doi.org/10.1088/0953-2048/27/8/082001]