DOI QR코드

DOI QR Code

Improving performance of piezoelectric energy harvester under electrostatic actuation using cavity

  • Delalat, Kourosh (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University) ;
  • Zamanian, Mehdi (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University) ;
  • Firouzi, Behnam (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University)
  • Received : 2021.04.27
  • Accepted : 2021.10.06
  • Published : 2021.10.25

Abstract

This study aims to investigate the effect of cavity on electric energy harvesting from cantilever beam vibrations under electrostatic actuation. Electrostatic actuation is created by a layer of radioisotope materials that is placed on the opposite side of the beam emitting electrons. When the beam is charged, the electrostatic force is generated between the beam and the opposite plate and pulls the beam towards itself. After the beam strikes the radioisotope, it is electrically discharged and then released. The piezoelectric layer converts the released microbeam vibration into electricity. The equations of motion coupled with the electrical effects of the piezoelectric layer are extracted using Hamilton's principle and Gauss's law. The equations are discretized by Galerkin method. The exact mode shape of the cantilever beam with the piezoelectric layer is employed as the comparison function. By identifying the relations governing the system, the output voltage and consequently the amount of harvested electrical energy are obtained using various parameters such as thickness and position of the cavity and system electrical resistance. The results indicates that creating cavity has a significant effect on the energy harvesting.

Keywords

References

  1. Abdelkefi, A., Najar, F., Nayfeh, A.H. and Ayed, S.B. (2011), "An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations", Smart Mater. Struct., 20(11), 115007. https://doi.org/10.1088/0964-1726/20/11/115007
  2. Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlin. Dyn., 67(2), 925-939. https://doi.org/10.1007/s11071-011-0035-1.
  3. Amini, Y., Heshmati, M., Fatehi, P. and Habibi, S.E. (2017), "Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads", Appl. Math. Model., 49, 1-16. https://doi.org/10.1016/j.apm.2017.04.043.
  4. Beer, F.P., Johnston Jr, E.R., Dewolf, J.T. and Mazurek, D.F. (2010), Mechanics of Materials, Sixth Edit Edition.
  5. Brufau-Penella, J. and Puig-Vidal, M. (2009), "Piezoelectric energy harvesting improvement with complex conjugate impedance matching", J. Intel. Mater. Syst. Struct., 20(5), 597-608. https://doi.org/10.1177/1045389X08096051.
  6. Chen, X.R., Yang, T.Q., Wang, W. and Yao, X. (2012), "Vibration energy harvesting with a clamped piezoelectric circular diaphragm", Ceram. Int., 38, S271-S274. https://doi.org/10.1016/j.ceramint.2011.04.099.
  7. Deepesh, U., Li, X. and Yang, Y. (2020), "Analytical and experimental investigation of stepped piezoelectric energy harvester", Smart Struct. Syst., 26(6), 681-692. https://doi.org/10.12989/sss.2020.26.6.681.
  8. Dow, A.B.A., Schmid, U. and Kherani, N.P. (2011), "Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes", Smart Mater. Struct., 20(11), 115019. https://doi.org/10.1088/0964-1726/20/11/115019
  9. Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integ. Ferroelec., 71, (1), 121-160. https://doi.org/10.1080/10584580590964574.
  10. Erturk, A. and Inman, D.J. (2008), "Issues in mathematical modeling of piezoelectric energy harvesters", Smart Mater. Struct., 17(6), 065016. https://doi.org/10.1088/0964-1726/17/6/065016
  11. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(1), 025009. https://doi.org/10.1088/0964-1726/18/2/025009
  12. Firouzi, B. and Zamanian, M. (2019), "The effect of capillary and intermolecular forces on instability of the electrostatically actuated microbeam with T-shaped paddle in the presence of fringing field", Appl. Math. Model., 71, 243-268. https://doi.org/10.1016/j.apm.2019.02.016.
  13. Franco, V.R. and Varoto, P.S. (2017), "Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters", Mech. Syst. Signal Pr., 93, 593-609. https://doi.org/10.1016/j.ymssp.2017.02.030.
  14. Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F. K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., 23(5), 421-428. http://doi.org/10.12989/sss.2019.23.5.421.
  15. Guan, Q.C., Ju, B., Xu, J.W., Liu, Y.B. and Feng, Z.H. (2013), "Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses", J. Intel. Mater. Syst. Struct., 24(9), 1059-1066. https://doi.org/10.1177/1045389X13476150.
  16. Junior, C.D.M., Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327(2), 9-25. https://doi.org/10.1016/j.jsv.2009.05.015.
  17. Kim, C., Ko, Y., Kim, T., Yoo, C. S., Choi, B., Han, S. H., ... & Kim, N. (2018), "Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters", Smart Struct. Syst., 22(2), 133-137. https://doi.org/10.12989/sss.2018.22.2.133.
  18. Kim, N. L., Jeong, S.S., Cheon, S.K., Park, T.G. and Kim, M.H. (2013), "Generating characteristics of hollow-plate-type piezoelectric energy harvesters", J. Korean Phys. Soc., 63(12), 2310-2313. https://doi.org/10.3938/jkps.63.2310.
  19. Li, W.G., He, S. and Yu, S. (2009), "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass", IEEE Tran. Indus. Elec., 57(3), 868-876. https://doi.org/10.1109/TIE.2009.2030761.
  20. Mehraeen, S., Jagannathan, S. and Corzine, K.A. (2009), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", IEEE Tran. Indus. Elec., 57(3), 820-830. https://doi.org/10.1109/TIE.2009.2037652.
  21. Mishra, K., Panda, S.K., Kumar, V. and Dewangan, H.C. (2020), "Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator", Smart Struct. Syst., 26(3), 391-401. https://doi.org/10.12989/sss.2020.26.3.391.
  22. Muralt, P. (2000), "Ferroelectric thin films for micro-sensors and actuators: A review", J. Micromech. Microeng., 10(2), 136. https://doi.org/10.1088/0960-1317/10/2/307
  23. Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram., 19(1), 167-184. https://doi.org/10.1007/s10832-007-9043-4.
  24. Pan, D. and Dai, F. (2018), "Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate", Energy Convers. Manage., 169, 149-160. https://doi.org/10.1016/j.enconman.2018.05.032.
  25. Rami Reddy, A., Umapathy, M., Ezhilarasi, D. and Gandhi, U. (2016), "Improved energy harvesting from vibration by introducing cavity in a cantilever beam", J. Vib. Control, 22(13), 3057-3066. https://doi.org/10.1177/1077546314558498.
  26. Rao, S.S. (2007), Vibration of Continuous Systems, Vol. 464, Wiley, New York.
  27. Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131. https://doi.org/10.1088/0964-1726/13/5/018
  28. Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M. and Tahir, M. (2019), "Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system", Sensor. Actuat. A: Phys., 300, 111634. https://doi.org/10.1016/j.sna.2019.111634.
  29. Sodano, H.A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-206. https://doi.org/10.1177/0583102404043275
  30. Usharani, R., Uma, G., Umapathy, M. and Choi, S.B. (2017), "A new broadband energy harvester using propped cantilever beam with variable overhang", Smart Struct. Syst., 19(5), 567-576. http://doi.org/10.12989/sss.2017.19.5.567.
  31. Wang, J., Zhao, G. and Zhang, H. (2009), "Optimal placement of piezoelectric curve beams in structural shape control", Smart Struct. Syst., 5(3), 241-260. http://doi.org/10.12989/sss.2009.5.3.241t.
  32. Wang, Z. and Xu, Y. (2007), "Vibration energy harvesting device based on air-spaced piezoelectric cantilevers", Appl. Phys. Lett., 90(26), 263512. https://doi.org/10.1063/1.2752726.
  33. Zamanian, M., Javadi, S., Firouzi, B. and Hosseini, S.A.A. (2018), "Modeling and analysis of power harvesting by a piezoelectric layer coated on an electrostatically actuated microcantilever", Mater. Res. Express, 5(12), 125502. https://doi.org/10.1088/2053-1591/aadf15
  34. Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam", Smart Struct. Syst., 16(5), 891-918. http://doi.org/10.12989/sss.2015.16.5.891.
  35. Zhang, Y. and Zhu, B. (2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563. http://doi.org/10.12989/sss.2012.9.6.549.
  36. Zhao, D., Gan, M., Zhang, C., Wei, J., Liu, S. and Wang, T. ( (2018), "Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester", Mater. Res. Express, 5(8), 085704. https://doi.org/10.1088/2053-1591/aad491