DOI QR코드

DOI QR Code

Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area

부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성

  • Kang, Nayeon (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • An, Joon Geon (Risk Assessment Research Center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Seon-Eun (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • Hyun, Sangmin (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology)
  • 강나연 (한국해양과학기술원 해양환경연구센터) ;
  • 안준건 (한국해양과학기술원 위해성분석연구센터) ;
  • 이선은 (한국해양과학기술원 해양환경연구센터) ;
  • 현상민 (한국해양과학기술원 해양환경연구센터)
  • Received : 2021.09.02
  • Accepted : 2021.10.01
  • Published : 2021.10.31

Abstract

This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 기후변화대응기술개발사업인 '부산 항만지역에서 미세먼지 발생과 거동에 대한 모니터링(과제번호 PN90430)'의 지원을 받아 수행되었습니다. PM2.5 시료의 SEM-EDS 분석은 강원대학교 연계형 융합 이미징 특화 센터의 장비를 이용하여 분석되었습니다. 또한 초고를 심사해주신 익명의 심사위원님께 감사드립니다.

References

  1. Bai, N., Khazaei, M., van Eeden, S. F., Laher, I., 2007, The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction, Pharmacol. Ther., 113, 16-29. https://doi.org/10.1016/j.pharmthera.2006.06.005
  2. Birch, M. E., Cary, R. A., 1996, Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol., 25, 221-241. https://doi.org/10.1016/0278-6826(96)00077-3
  3. Castro, L. M., Pio, C. A., Harrison, R. M., Smith, D. J. T., 1999, Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations, Atmos. Environ., 33, 2771-2781. https://doi.org/10.1016/S1352-2310(98)00331-8
  4. Chang, Y. W., Lee, J. Y., 2019, Characteristics of temperature-resolved OC and EC fractions in PM2.5 measured at Anmyeon island in Korea, J. Korean Soc. Atmos. Environ., 35, 658-669. https://doi.org/10.5572/kosae.2019.35.5.658
  5. Chen, B., Andersson, A., Lee, M., Kirillova, E. N., Xiao, Q., Krusa, M., Shi, M., Hu, K., Lu, Z., Streets, D. G., Du, K., Gustafsson, O., 2013, Source forensics of black carbon aerosols from China, Environ. Sci. Technol., 47, 9102-9108. https://doi.org/10.1021/es401599r
  6. Cho, S. H., Kim, P. R., Han, Y. J., Kim, H. W., Yi, S. M., 2016, Characteristics of ionic and carbonaceous compounds in PM2.5 and high concentration events in Chuncheon, Korea, J. Korean Soc. Atmos. Environ., 32, 435-447. https://doi.org/10.5572/KOSAE.2016.32.4.435
  7. Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., Gustafsson, O., 2016, Radiative absorption enhancement from coatings on black carbon aerosols, Sci. Total Environ., 551-552, 51-56. https://doi.org/10.1016/j.scitotenv.2016.02.026
  8. Ha, E. J., Park, J. H., 2021, Analysis of deposited dust particles using SEM/EDX, J. Environ. Sci. Int., 30, 279-287. https://doi.org/10.5322/JESI.2021.30.3.279
  9. Han, Y. M., Lee, S. C., Cao, J. J., Ho, K. F., An, Z. S., 2009, Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China, Atmos. Environ., 43, 6066-6073. https://doi.org/10.1016/j.atmosenv.2009.08.018
  10. Hwang, H. J., Oh, M. J., Kang, S. E., Kim, H. K., Ro, C. U., 2005, Characterization of aerosols collected at a subway station platform using Low-Z particle electron probe X-ray microanalysis, J. Korean Soc. Atmos. Environ., 21, 639-647.
  11. Hwang, I. J., Yi, S. M., Park, J. S., 2020b, Estimation of source apportionment for filter-based PM2.5 data using the EPA-PMF model at air pollution monitoring supersites, J. Korean Soc. Atmos. Environ., 36, 620-632. https://doi.org/10.5572/kosae.2020.36.5.620
  12. Hwang, K. C., An, J. G., Lee, S. H., Choi, W. S., Yim, U. H., 2020a, A Study on the ozone formation potential of volatile organic compounds in Busan using SIFT-MS, J. Korean Soc. Atmos. Environ., 36, 645-668. https://doi.org/10.5572/kosae.2020.36.5.645
  13. Jacob, D. J., Winner, D. A., 2009, Effect of climate change on air quality, Atmos. Environ., 43, 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051
  14. Jeon, B. I., 2010, Characteristics of spacio-temporal variation for PM10 and PM2.5 concentration in Busan, J. Environ. Sci., 19, 1013-1023.
  15. Jeon, B. I., 2020, Spaciotemporal variation of PM10 and PM2.5 concentration for 2015 to 2018 in Busan, J. Environ. Sci. Int., 29, 749-760. https://doi.org/10.5322/JESI.2020.29.7.749
  16. Jeon, B. I., Hwang, Y. S., 2014, Characteristics of weekday/weekend PM10 and PM2.5 concentrations at Busan, J. Environ. Sci. Int., 23, 1241-1251. https://doi.org/10.5322/JESI.2014.23.7.1241
  17. Jeong, J. H., Shon, Z. H., Kang, M. S., Song, S. K., Kim, Y. K., Park, J. S., Kim, H. J., 2017, Comparison of source apportionment of PM2.5 using receptor models in the main hub port city of East Asia: Busan, Atmos. Environ., 148, 115-127. https://doi.org/10.1016/j.atmosenv.2016.10.055
  18. Jung, J. H., Kim, S. R., Choi, B. R., Kim, K. S., Huh, J. B., Yi, S. M., Han, Y. J., 2009, A Study on the characteristics of carbonaceous compounds in PM2.5 measured in Chuncheon and Seoul, J. Korean Soc. Atmos. Environ., 25, 141-153. https://doi.org/10.5572/KOSAE.2009.25.2.141
  19. Kaufman, Y. J., Tanre, D., Boucher, O., 2002, A Satellite view of aerosols in the climate system, Nature, 419, 215-223. https://doi.org/10.1038/nature01091
  20. Kim, H. S., Huh, J. B., Hopke, P. K., Holsen, T. M., Yi, S. M., 2007, Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004, Atmos. Environ., 41, 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  21. Kim, H. S., Jung, J. S., Lee, J. H., Lee, S. I., 2015, Seasonal characteristics of organic carbon and elemental carbon in PM2.5 in Daejeon, J. Korean Soc. Atmos. Environ., 31, 28-40. https://doi.org/10.5572/KOSAE.2015.31.1.028
  22. Kim, J. M., Jo, Y. J., Yang, G. H., Heo, G. K., Kim, C. H., 2020, Analysis of recent trends of particulate matter observed in Busan - comparative study on Busan vs. Seoul metropolitan area (I), J. Environ. Sci. Int., 29, 177-189. https://doi.org/10.5322/JESI.2020.29.2.177
  23. Lee, B. J., Park, S. S., 2019, Evaluation of PM1.0 and PM2.5 concentrations from online light scattering dust monitors using gravimetric and beta-ray absorption methods, J. Korean Soc. Atmos. Environ., 35, 357-369. https://doi.org/10.5572/kosae.2019.35.3.357
  24. Lee, H. S., Kang, B. W., 2001, Chemical characteristics of principal PM2.5 species in Chongju, South Korea, Atmos. Environ., 35, 739-746. https://doi.org/10.1016/S1352-2310(00)00267-3
  25. Lee, S. C., Cheng, Y., Ho, K. F., Cao, J. J., Louie, P. K., Chow, J. C., Watson, J. G., 2006, PM1.0 and PM2.5 characteristics in the roadside environment of Hong Kong, Aerosol Sci. Technol., 40, 157-165. https://doi.org/10.1080/02786820500494544
  26. Lee, Y. K., Kim, W. S., Hong, S. M., Shin, E. S., 2014, Comparison of air pollution characteristics in the center lane-bus stop and the surrounding areas, J. Korean Soc. Atmos. Environ., 30, 378-386. https://doi.org/10.5572/KOSAE.2014.30.4.378
  27. Lewis, T. C., Robins, T. G., Dvonch, J. T., Keeler, G. J., Yip, F. Y., Mentz, G. B., Lin, X., Parker, E. A., Israel, B. A., Gonzalez, L., Hill, Y., 2005, Air pollution-associated changes in lung function among asthmatic children in Detroit, Environ. Health Perspectives, 113, 1068-1075. https://doi.org/10.1289/ehp.7533
  28. Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., Kang, K., 2012, Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature, Atmos. Chem. Phys., 12, 2007-2024. https://doi.org/10.5194/acp-12-2007-2012
  29. Lohmann, U., Feichter, J., 2005, Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5, 715-737. https://doi.org/10.5194/acp-5-715-2005
  30. MOE, 2018, White paper of environment, Ministry of Environment, Sejong, Korea.
  31. Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, M., Hitzenberger, R., Vecchi, R., Saraga, D., Sciare, J., Jaffrezo, J. L., John, A., Schwarz, J., Giannoni, M., Novak, J., Karanasiou, A., Fermo, P., Maenhaut, W., 2015, ECOC comparison exercise with identical thermal protocols after temperature offset correction - instrument diagnostics by in-depth evaluation of operational parameters, Atmos. Meas. Tech., 8, 779-792. https://doi.org/10.5194/amt-8-779-2015
  32. Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H. R., Sunyer, J., Bisanti, L., Zmirou, D., Vonk, J. M., Pekkanen, J., Goodman, P., Paldy, A., Schindler, C., Katsouyanni, K., 2005, Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project, Environ. Health Perspectives, 113, 88-95. https://doi.org/10.1289/ehp.7387
  33. Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T., 2002, Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles, Environ. Sci. Technol., 36, 1169-1180. https://doi.org/10.1021/es0108077
  34. Seinfeld, J. H., Pandis, S. N., 2012, Atmospheric chemistry and physics: from air pollution to climate change, John Wiley and Sons, New York.
  35. Song, Y., Wang, X., Maher, B. A., Li, F., Xu, C., Liu, X., Sun, X., Zhang, Z., 2016, The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China, J. Clean. Prod., 112, 1312-1318. https://doi.org/10.1016/j.jclepro.2015.05.006
  36. Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., Yarber, K. F., 2003a, An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108, 8809.
  37. Streets, D. G., Yarber, K. F., Woo, J. H., Carmichael, G. R., 2003b, Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles, 17, 1099.
  38. Turpin, B. J., Huntzicker, J. J., 1995, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ., 29, 3527-3544. https://doi.org/10.1016/1352-2310(94)00276-Q
  39. Wan, Z., Zhu, M., Chen, S., Sperling, D., 2016, Three steps to a green shipping industry, Nature, 530, 275-277. https://doi.org/10.1038/530275a
  40. Xu, W., Wang, F., Li, J., Tian, L., Jiang, X., Yang, J., Chen, B., 2017, Historical variation in black carbon deposition and sources to Northern China sediments, Chemosphere, 172, 242-248. https://doi.org/10.1016/j.chemosphere.2016.12.155
  41. Yin, J., Harrison, R. M., 2008, Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites, Atmos. Environ., 42, 980-988. https://doi.org/10.1016/j.atmosenv.2007.10.005