DOI QR코드

DOI QR Code

Evaluation of applicability of linkage modeling using PHABSIM and SWAT

PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가

  • Kim, Yongwon (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Byeon, Sangdon (Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, Kangwon National University) ;
  • Park, Jinseok (Department of Rural Systems Engineering, Global Smart Farm Convergence Major, Seoul National University) ;
  • Woo, Soyoung (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Seongjoon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 김용원 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 변상돈 (강원대학교 일반대학원 환경의생명융합학과) ;
  • 박진석 (서울대학교 일반대학원 생태조경.지역시스템공학부 지역시스템공학전공) ;
  • 우소영 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2021.07.20
  • Accepted : 2021.08.24
  • Published : 2021.10.31

Abstract

This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

본 연구는 안동댐 하류(4,565.7 km2)를 대상으로 준분포형 수문모델인 SWAT과 서식처모델인 PHABSIM을 연계하여 적용성을 평가하고, 대상어종에 대해 환경생태유량을 산정하였다. 대상유역 내 다목적 댐 2개(안동댐: ADD, 임하댐: IHD)의 실제운영자료를 구축하여 SWAT에 적용하였으며 추가로 1개의 수위관측소(구담: GD)을 선정하여 ADD, IHD, GD에 대해 유입·유출량 검보정을 수행하였다. 검보정 결과 R2는 0.52 ~ 0.74, NSE는 0.48 ~ 0.71, RMSE는 0.92 ~ 2.51 mm/day로 분석되었다. 검보정된 GD의 유출량을 이용하여 2012년부터 2020년까지의 유황분석을 실시한 결과, 관측값의 유황분석 결과와 비교하여 평균 Q185는 36.5 m3/sec (-1.4%), 평균 Q275는 23.8 m3/sec (0%)로 분석되어 Q185와 Q275를 PHBASIM의 유량 경계조건으로 적용하였다. PHABSIM의 대상하천은 GD가 위치한 410 m 구간으로 선정하였고 하천기본계획보고서 기반으로 하천단면 및 수리인자를 구축하였다. 대상하천의 우점종은 피라미, 아우점종은 돌고기로 분석되었으며 문헌조사를 통해 대상어종의 HSI를 수집하였다. PHABSIM 수위 모의결과, Q185, Q275에서 각각 -0.12, +0.00 m의 오차가 발생하였고, 유속모의의 경우 Q185, Q275에서 각각 +0.06, +0.09 m/s의 오차가 발생하여 연계모의가 적절하게 된 것을 확인하였다. PHABSIM의 서식처 모의 결과, 피라미의 평균 가중가용면적 WUA와 환경생태유량은 76,817.0 m2/1000m, 20.0 m3/sec, 돌고기의 평균 WUA와 환경생태유량은 46,628.6 m2/1000m, 9.0 m3/sec로 분석되어 피라미가 돌고기보다 대상하천에 대해 적응성이 높은 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050001).

References

  1. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., and Jha, M.K. (2012). "SWAT: model use, calibration, and validation." Transactions of the ASABE, ASABE, Vol. 55, No. 4, pp. 1491-1508. https://doi.org/10.13031/2013.42256
  2. Arnold, J.G., Williams, J.R., Srinivasan, R., and King, K.W. (1996). SWAT manual. USDA, Agricultural Research Service and Blackland Research Center, Texas, U.S.
  3. Cabecinha, E., Cortes, R., Cabral, J.A., Ferreira, T., Lourenco, M., and Pardal, M.A. (2009). "Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs." Ecological Indicator, Elsevier, Vol. 9, No. 2, pp. 240-255. https://doi.org/10.1016/j.ecolind.2008.04.006
  4. Chung, J.H., Lee, Y.G., and Kim, S.J. (2019). "Assessment of surface temperature mitigation effects of wetlands during heat and cold waves using daytime and nighttime MODIS land surface temperature." Journal of Wetlands Research, Kwetland, Vol. 21, No. s-1, pp. 123-133.
  5. Domingues, R.B., and Galvao, H. (2007). "Phytoplankton and environmental variability in a dam regulated temperate estuary." Hydrobiologia, Springer, Vol. 586, No. 1, pp. 117-134. https://doi.org/10.1007/s10750-006-0567-4
  6. Gupta, H.V., Sorooshian, S., and Yapo, P.G., (1999). "Status of automatic calibration for hydrologic models: comparison with multi level expert calibration." Journal of Hydrology, ASCE, Vol. 4, No. 2, pp. 135-143.
  7. Hotzel, G., and Croome. R. (1999). A phytoplankton methods manual for australian freshwaters. LWRRDC Occasional Paper, LWRRDC, pp. 1-58.
  8. Hur, J.W., and Kim, J.K. (2009). "Assessment of riverin health condition and estimation of optimal ecological flowrate considering fish habitat in downstream of Yongdam Dam." Journal of Korean Water Resources Association, KWRA, Vol. 42, No. 6, pp. 481-491. https://doi.org/10.3741/JKWRA.2009.42.6.481
  9. Hur, J.W., Kang, H.S., Jang, M.H., and Lee, J.Y. (2013). "Fish community and estimation of optimal ecological flowrate in up and downstream of Hoengseong Dam." Journal of Environmental Science International, KENSS, Vol. 22, No. 8, pp. 925-935. https://doi.org/10.5322/JESI.2013.22.8.925
  10. Hur, J.W., Kim, D.H., and Kang, H.S. (2014). "Estimation of optimal ecological flowrate of fish in Chogang Stream." Journal of Korean Society of Ecology and Infrastructure Engineering, KSEIE, Vol. 1, No. 1, pp. 39-48.
  11. Im, D.K., Jung, S.H., Ahn, H.K., and Kim, K.H. (2007). "Application of Physical Habitat Simulation System (PHABSIM) in the reach of small dam removal for Zacco platypus." Journal of Korean Water Resources Association, KWRA, Vol. 40, No. 11, pp. 909-920. https://doi.org/10.3741/JKWRA.2007.40.11.909
  12. Jang, K.H., Park, Y.K., Kangm J.I., and Kim, M.H. (2018). "Estimation of ecological flow rate for Zacco platypus based on habitat suitability index considering probability density function." Journal of Korean Water Resources Association, KWRA, Vol. 51, No. 3, pp. 207-219.
  13. Jang, K.H., Park, Y.K., Kim, K.O., and Chung, M. (2017). "A comparative study on assessment model of ecological flow rate considering instream flow incremental methodology." Journal of the Korean Society for Environmental Technology, KSET, Vol. 18, No. 6, pp. 604-616. https://doi.org/10.26511/jkset.18.6.11
  14. Jung, C.G., Lee, J.W., Ahn, S.R., Hwang, S.J., and Kim, S.J. (2016). "Assessment of ecological streamflow for maintaining good ecological water environment." Journal of Korean Society of Agricultural Engineers, KSAE, Vol. 58, No. 3, pp. 1-12. https://doi.org/10.5389/KSAE.2016.58.3.001
  15. K-water (2018). A research on estimation and securing of environmental flow.
  16. Kang, H.S. (2010). Discussion for estimation of physical habitat suitability index for fish. Working paper, Korea Environment Institute.
  17. Kang, H.S., and Hur, J.W. (2012). "Aquatic ecosystem assessment and habitat improvement alternative in Hongcheon River using fish community." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 5B, pp. 331-343. https://doi.org/10.12652/Ksce.2012.32.5B.331
  18. Kim, S.K., and Choi, S.U. (2014). "Change of fish habitat in a downstream reach of a stream due to dam construction." Ecology and Resilient Infrastructure, KSEIE, Vol. 1, No. 2, pp. 61-67. https://doi.org/10.17820/eri.2014.1.2.061
  19. Kim, S.M., and Choi, H.S. (2021). "Analysis and evaluation of physical habitat suitability for the stream fish." Magazine of the Korean Society of Agricultural Engineers, KSAE, Vol. 63, No. 1, pp. 2-8.
  20. Lee, J.J., Kim, S.Y., and Hur, J.W. (2021). "A study on the estimation of environmental ecological flow in the Gilan Stream of Nakdong River." Crisisonomy, KRCEM, Vol. 17, No. 3, pp. 99-111.
  21. Ministry of Environment (ME) (2018). Notification of instream flow status. National Institute of Environmental Research.
  22. Ministry of Land, Infrastructure and Transport (MOLIT) (2009). Nakdong river basic plan report.
  23. Mkhwanazi, M., Chavez, J.L., and Rambikur, E.H. (2012). "Comparison of large aperture scintillometer and satellite based energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications, IJRSA Vol. 2, No. 1, pp. 24-30.
  24. Moir, H.J., Gibbins, C.N., Soulsby, C., and Youngson, A.F. (2005). "PHABSIM modelling of atlantic Salmon spawning habitat in an upland stream: Testing the influence of habitat suitability indices on model output." River Research and Applications, Wiley, Vol. 21, No. 9, pp.1021-1034. https://doi.org/10.1002/rra.869
  25. Moriasi, D.H., Wilson, B.N., Douglas-Mankin, K.R., Arnold, J.G., and Gowda, P.H. (2012). "Hydrologic and water quality models: Use, calibration, and validation." Transactions of the ASABE, ASABE, Vol. 55, No. 4, pp. 1241-1247. https://doi.org/10.13031/2013.42265
  26. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  27. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." Transactions of the ASABE, ASABE, Vol. 58, No. 6, pp. 1763-1785. https://doi.org/10.13031/trans.58.10715
  28. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." Journal of Hydrology, Elsevier BV, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  29. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and water assessment tool; The theoretical documentation. U.S Agricultural Research Service, pp. 340-367, Temple, Texas, U.S.
  30. Park, J.S., Jang, S.J., and Song, I.H. (2020). "Estimation of optimum ecological stream flow in the Banbyeon Stream using PHABSIM -Focused on Zacco platypus and Squalidus chankaensis tsuchigae-." Journal of Korean Society of Agricultural Engineers, KSAE, Vol. 62, No. 6, pp. 51-62. https://doi.org/10.5389/KSAE.2020.62.6.051
  31. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., and Hauck, L.M. (2001). "Validation of the swat model on a large rwer basin with point and nonpoint sources 1." Journal of the American Water Resources Association, JAWRA, Vol. 37, No. 5, pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  32. Stalnaker, C.B., Lamb, B.L., Henriksen, J., Bovee, K., and Bartholow, J. (1995). The instream flow incremental methodology a primer for IFIM. Biological report 29. U.S. Department of the Interior, Fort Collins CO, pp. 45.
  33. Tamai, N., Okuda, S., and Nakamura, S. (2000). Assessingriverine environments for habitat suitability on the basis of natural potential. University Tokyo Press, Japan, pp. 1-270.
  34. Waddle, T. (2001). PHABSIM for Windows user's manual and exercises. No. 2001-340. USGS, U.S. Geological Survey, VA, U.S.
  35. Wang, H., Wang, H., Hao, Z., Wang, X., Liu, M., and Wang, Y. (2018). "Multi-objective assessment of the ecological flow requirement in the upper Yangtze national nature reserve in China using PHABSIM." Water, MDPI, Vol. 10, No. 3, pp. 1-16. https://doi.org/10.3390/w10020001
  36. Wu, F.C. (2001). "Ecohydraulic modeling of instream physical habitat by modified PHABSIM." International Conference on Ecological Protection of the Planet Earth, Xanthi, Greece, pp. 1-8.