DOI QR코드

DOI QR Code

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island

제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가

  • Jeon, Hyunho (Department of Global Smart City, Sungkyunkwan University) ;
  • Cho, Sungkeun (Department of Water Resources, Sungkyunkwan University) ;
  • Chung, Il-Moon (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Minha (School of Civil, Architecture Engineering & Landscape Architecture, Sungkyunkwan University)
  • 전현호 (성균관대학교 글로벌스마트시티융합전공) ;
  • 조성근 (성균관대학교 수자원학과) ;
  • 정일문 (한국건설기술연구원 수자원하천연구본부) ;
  • 최민하 (성균관대학교 건설환경공학부)
  • Received : 2021.05.28
  • Accepted : 2021.08.20
  • Published : 2021.10.31

Abstract

In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

제주도는 지질 및 수문계의 특이성으로 인해 수문기상인자 분석을 통한 수문 분석 및 효율적인 물관리가 필수적이다. 하지만 수문기상인자의 지상관측자료는 주변 환경에 의한 영향이 크게 작용하여 공간적인 대표성을 띄기 힘들며, 이를 극복하기 위해 원격탐사 방법이 사용된다. 본 연구에서는 제주도에서 기존에 다른 지역들에서 적용성이 검증된 바 있는 MOD16 증발산량, Global Land Data Assimilation System (GLDAS) 증발산량, GLDAS 토양수분, Advanced SCATerometer(ASCAT) 토양수분 산출물들의 적용성을 평가하였다. 증발산의 경우 강수량과의 총량 비교 및 플럭스타워 증발산량 관측자료와의 비교를 시행하였고, 토양수분의 경우 6개 토양수분 관측소의 관측자료와 비교하였다. 그 결과 증발산량의 경우 연 강수량의 57%가 증발산량으로 산출되었고, MOD16 증발산량과 GLDAS 증발산량의 상관계수는 0.759로 양호한 값이 산출되었으나, 플럭스타워 증발산량 데이터와 MOD16 증발산량의 상관계수는 0.289, GLDAS 증발산량과의 상관계수는 0.434로 상대적으로 적합성이 낮게 나타났다. 토양수분의 경우 GLDAS 자료의 경우 모든 지점에서 지점자료와 비교하였을 때 RMSE 값은 0.05 미만의 값을 나타냈고, 상관계수의 유의성 검정 결과 통계적으로 유의미한 결과를 얻었다. 하지만 위성자료의 경우 월각지점에서 0.05 이상의 RMSE 값이 나타났고, 세화, 한동 지점에서 상관성이 없다는 상관계수의 유의성 검정 결과를 확인하였다. 이는 제주도에 설치된 증발산량 및 토양수분 센서의 품질관리 및 공간대표성을 띄는 면단위 센서가 충분히 제공되지 않아 위와 같은 결과가 나타나는 것으로 판단된며 더불어 지점 자료의 관리 및 위성, 재분석 자료의 경우 관측 픽셀이 해안과 인접할 시 나타나는 오차로 추정된다. 본 연구를 통해 기존 수문기상인자 지상관측 자료의 개선 필요성을 역셜하고, 이를 통해 제주도에서의 효율적인 물관리 를 위한 기반을 구축하고자 한다.

Keywords

Acknowledgement

본 연구는 K-Water의 위탁연구사업 "제주도 수자원 부존 현황 조사 및 분석"의 성과입니다. 이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF2019R1A2B5B01070196). 본 저작물은 기상청에서 2018년부터 2020년까지 작성하여 공공누리 제 1유형으로 개방한 지상관측 토양수분 데이터와 2019년부터 2020년까지 작성하여 공공누리 제 1유형으로 개방한 지상관측 일강수량 데이터를 이용하였으며, 해당 저작물은 기상청, 기상자료개방포털(https://data.kma.go.kr/cmmn/main.do)에서 무료로 다운받으실 수 있습니다. 본 저작물은 국립산림과학원에서 2020년에 작성하여 공공누리 제 1유형으로 개방한 잠열 플럭스 데이터를 이용하였으며, 해당 저작물은 국립산림과학원, 산림과학지식서비스(https://know.nifos.go.kr/know/info/main/knowMain.do)에서 무료로 다운받으실 수 있습니다.

References

  1. Alemayehu, T., Griensven, A.V., Senay, G.B., and Bauwens, W. (2017). "Evapotranspiration mapping in a heterogeneous landscape using remote sensing and global weather datasets: Application to the Mara Basin, East Africa." Remote Sensing, Vol. 9, No. 4, p. 390. https://doi.org/10.3390/rs9040390
  2. Allen, R.G., Dhungel, R., Dhungana, B., Huntington, J., Kilic, A., and Morton, C. (2021). "Conditioning point and gridded weather data under aridity conditions for calculation of reference evapotranspiration." Agricultural Water Management, Vol. 245, 106531. https://doi.org/10.1016/j.agwat.2020.106531
  3. Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J., and Anderson, C. (2007). "Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT)." Geophysical Research Letters, Vol. 34, No. 20.
  4. Berg, A.A., Famiglietti, J.S., Walker, J.P., and Houser, P.R. (2003). "Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes." Journal of Geophysical Research: Atmospheres, Vol. 108, No. D16.
  5. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). "Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe." Remote Sensing of Environment, Vol. 115, No. 12, pp. 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  6. Choi, I.C., Shin, H.J., Nguyen, T.T., and Tenhunen, J. (2017). "Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management." Water, Vol. 9, No. 9, p. 717. https://doi.org/10.3390/w9090717
  7. Choi, M., and Jacobs, J.M. (2007). "Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints." Advances in Water Resources, Vol. 30, No. 4, pp. 883-896. https://doi.org/10.1016/j.advwatres.2006.07.007
  8. D'Odorico, P., Caylor, K., Okin, G.S., and Scanlon, T.M. (2007). "On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems." Journal of Geophysical Research: Biogeosciences, Vol. 112, No. G4.
  9. Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T. (2011). "The international soil moisture network: A data hosting facility for global in situ soil moisture measurements." Hydrology and Earth System Sciences, Vol. 15, No. 5, pp. 1675-1698. https://doi.org/10.5194/hess-15-1675-2011
  10. Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., Baldocchi, D., Townsend, P.A., Kilic, A., Tu, K., Miralles, D.D., Perret, J., Lagouarde, J.P., Waliser, D., Purdy, A.J., French, A., Schimel, D., Famiglietti, J.S., Stephens, G., and Wood, E.F. (2017). "The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources." Water Resources Research, Vol. 53, No. 4, pp. 2618-2626. https://doi.org/10.1002/2016WR020175
  11. Fisher, J.B., Tu, K.P., and Baldocchi, D.D. (2008). "Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites." Remote Sensing of Environment, Vol. 112, No. 3, pp. 901-919. https://doi.org/10.1016/j.rse.2007.06.025
  12. Herkelrath, W.N., Hamburg, S.P., and Murphy, F. (1991). "Automatic, real-time monitoring of soil moisture in a remote field area with time domain reflectometry." Water Resources Research, Vol. 27, No. 5, pp. 857-864. https://doi.org/10.1029/91WR00311
  13. Hogstrom, E., Heim, B., Bartsch, A., Bergstedt, H., and Pointner, G. (2018). "Evaluation of a MetOp ASCAT-Derived surface soil moisture product in tundra environments." Journal of Geophysical Research: Earth Surface, Vol. 123, No. 12, pp. 3190-3205. https://doi.org/10.1029/2018JF004658
  14. Hong, S., and Shin, I. (2011). "A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing." Journal of Hydrology, Vol. 405, No. 1-2, pp. 24-30. https://doi.org/10.1016/j.jhydrol.2011.05.005
  15. Jeong, D., and Kang, J. (2009). "An analysis of changes in pan evaporation and climate values related to actual evaporation." Journal of Korea Water Resources Association, Vol. 42, No. 2, pp. 117-129. https://doi.org/10.3741/JKWRA.2009.42.2.117
  16. Jeong, J., Cho, S., Baik, J., and Choi, M. (2018). "A study on the establishment of a Korean soil moisture network (2): Measurement of intermediate-scale soil moisture using a cosmic-ray sensor." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 83-91. https://doi.org/10.9798/kosham.2018.18.7.83
  17. Kang, M., Kwon, H., Kim, J., Kim, H.S., Ryu, Y., Lee, S.J., and Choi, T. (2018). "Korean flux monitoring network's past, present, and future." Korean Journal of Agricultural and Forest Meteorology, Vol. 20, No. 1, pp. 1-4. https://doi.org/10.5532/KJAFM.2018.20.1.1
  18. Khan, M.S., Liaqat, U.W., Baik, J., and Choi, M. (2018). "Standalone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach." Agricultural and Forest Meteorology, Vol. 252, pp. 256-268. https://doi.org/10.1016/j.agrformet.2018.01.022
  19. Kim, B.S., Hamm, S.Y., Lee, C.M., Ok, S.I., Cha, E.J., and Ko, Y.S. (2011). "Features of regional hydrogeology and groundwater distribution of volcanic rocks in Jeju Island." Journal of the Geological Society of Korea, Vol. 47, No. 3, pp. 263-276.
  20. Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S., and Choi, M. (2016). "An assessment and analysis of the gap-filling techniques for revising missing data of flux tower based evapotranspiration-FAO-PM, MDV, and Kalman filter." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107. https://doi.org/10.9798/KOSHAM.2016.16.6.95
  21. Kim, S., Jeong, J., Zohaib, M., and Choi, M. (2018). "Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine." Stochastic Environmental Research and Risk Assessment, Vol. 32, No. 12, pp. 3455-3473. https://doi.org/10.1007/s00477-018-1620-3
  22. Lee, Y., and Kim, S. (2016). "The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data." Remote Sensing, Vol. 8, No. 12, 983. https://doi.org/10.3390/rs8120983
  23. Lievens, H., Reichle, R.H., Liu, Q., De Lannoy, G.J., Dunbar, R.S., Kim, S.B., Das, N.N., Cosh, M., Walker, J.P., and Wagner, W. (2017). "Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates." Geophysical Research Letters, Vol. 44, No. 12, pp. 6145-6153. https://doi.org/10.1002/2017GL073904
  24. Mittelbach, H., Lehner, I., and Seneviratne, S.I. (2012). "Comparison of four soil moisture sensor types under field conditions in Switzerland." Journal of Hydrology, Vol. 430, pp. 39-49. https://doi.org/10.1016/j.jhydrol.2012.01.041
  25. Monteith, J.L. (1965). "Evaporation and the environment." Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
  26. Moshir, P.D., Sadeghi Tabas, S., Kalantari, Z., Ferreira, C.S.S., and Zahabiyoun, B. (2021). "Spatio-temporal assessment of global gridded evapotranspiration datasets across Iran." Remote Sensing, Vol. 13, No. 9, 1816. https://doi.org/10.3390/rs13091816
  27. Mu, Q., Heinsch, F.A., Zhao, M., and Running, S.W. (2007). "Development of a global evapo-transpiration algorithm based on MODIS and global meteorology data." Remote Sensing of Environment, Vol. 111, No. 4, pp. 519-536. https://doi.org/10.1016/j.rse.2007.04.015
  28. Mu, Q., Zhao, M., and Running, S.W. (2011). "Improvements to a MODIS global terrestrial evapotranspiration algorithm." Remote Sensing of Environment, Vol. 115, No. 8, pp. 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019
  29. Naeimi, V., Bartalis, Z., and Wagner, W. (2009). "ASCAT soil moisture: An assessment of the data quality and consistency with the ERS scatterometer heritage." Journal of Hydrometeorology, Vol. 10, No. 2, pp. 555-563. https://doi.org/10.1175/2008JHM1051.1
  30. Nguyen, H.H., Jeong, J., and Choi, M. (2019). "Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors." Journal of Hydrology, Vol. 571, pp. 679-696. https://doi.org/10.1016/j.jhydrol.2019.02.018
  31. Park, J., and Choi, M. (2015). "Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS)." Stochastic Environmental Research and Risk Assessment, Vol. 29, No. 8, pp. 1963-1992. https://doi.org/10.1007/s00477-014-1004-2
  32. Shuttleworth, W.J., and Wallace, J.S. (1985). "Evaporation from sparse crops-an energy combination theory." Quarterly Journal of the Royal Meteorological Society, Vol. 111, No. 469, pp. 839-855. https://doi.org/10.1002/qj.49711146910
  33. Skierucha, W., and Wilczek, A. (2010). "A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range." Sensors, Vol. 10, No. 4, pp. 3314-3329. https://doi.org/10.3390/s100403314
  34. Song, S.H., and Choi, K.J. (2012). "An appropriate utilization of agricultural water resources of Jeju island with climate change (I)." Journal of Soil and Groundwater Environment, Vol. 17, No. 2, pp. 62-70. https://doi.org/10.7857/JSGE.2012.17.2.062
  35. Tang, R., Shao, K., Li, Z.L., Wu, H., Tang, B.H., Zhou, G., and Zhang, L. (2015). "Multiscale validation of the 8-day MOD16 evapotranspiration product using flux data collected in China." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 4, pp. 1478-1486. https://doi.org/10.1109/JSTARS.2015.2420105
  36. Um, M.J., Yun, H., Jeong, C.S., and Heo, J.H. (2011). "Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea." Journal of Hydrology, Vol. 410, No. 3-4, pp. 189-203. https://doi.org/10.1016/j.jhydrol.2011.09.016
  37. Walker, J.P., Willgoose, G.R., and Kalma, J.D. (2001). "One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms." Advances in Water Resources, Vol. 24, No. 6, pp. 631-650. https://doi.org/10.1016/S0309-1708(00)00043-9
  38. Wang, Y.J., Wang, S.D., Song, W.L., and Yang, S. (2013). "Application of GLDAS data to the potential evapotranspiration monitoring in Weihe River Basin." Journal of Arid Land Resources and Environment, Vol. 27, pp. 54-58.
  39. Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K., Zhao, X., Qin, Q., Zhao, B., Han, S., Zhou, G., Zhou, G., Li, Y. and Zhao, S. (2013). "MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm." Agricultural and Forest Meteorology, Vol. 171, pp. 187-202. https://doi.org/10.1016/j.agrformet.2012.11.016
  40. Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., and Zou, P. (2015). "Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations." Remote Sensing of Environment, Vol. 163, pp. 91-110. https://doi.org/10.1016/j.rse.2015.03.008
  41. Zohaib, M., Kim, H., and Choi, M. (2017). "Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in East Asia." Journal of Geophysical Research: Atmospheres, Vol. 122, No. 15, pp. 7705-7722. https://doi.org/10.1002/2016JD026379